Jef Baelen , Barbara Dewaele , Maria Debiec-Rychter , Raphael Sciot , Patrick Schöffski , Daphne Hompes , Friedl Sinnaeve , Hazem Wafa , Isabelle Vanden Bempt
{"title":"Optical Genome Mapping for Comprehensive Cytogenetic Analysis of Soft-Tissue and Bone Tumors for Diagnostic Purposes","authors":"Jef Baelen , Barbara Dewaele , Maria Debiec-Rychter , Raphael Sciot , Patrick Schöffski , Daphne Hompes , Friedl Sinnaeve , Hazem Wafa , Isabelle Vanden Bempt","doi":"10.1016/j.jmoldx.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Soft-tissue and bone tumors represent a heterogeneous group of tumors encompassing more than 100 histologic subtypes today. Identifying genetic aberrations increasingly is important in these tumors for accurate diagnosis. Although gene mutations typically are detected by second-generation sequencing, the identification of structural variants (SVs) and copy number alterations (CNAs) remains challenging and requires various cytogenetic techniques including karyotyping, fluorescence <em>in situ</em> hybridization, and arrays, each with important limitations. Optical Genome Mapping (OGM), a non–sequencing-based technique for high-resolution detection of SVs and CNAs, was applied in a retrospective series of diagnostic soft-tissue and bone tumor samples. Sample preparation was successful in 38 of 53 cases, with the highest success rate in nonadipocytic soft-tissue tumors (24 of 27 cases; 89%). In 32 of 35 cases carrying a diagnostic SV or CNA, OGM identified the aberration (91%), including a <em>POU2AF3::EWSR1</em> fusion in a round cell sarcoma and a translocation t(1;5)(p22;p15) in a myxoinflammatory fibroblastic sarcoma. Interestingly, OGM shed light on the genomic complexity underlying the various aberrations. In five samples, OGM showed that chains of rearrangements generated the diagnostic fusion, three of which involved chromoplexy. In addition, in nine samples, chromothripsis was causal to the formation of giant marker/ring/double-minute chromosomes. Finally, compared with standard-of-care cytogenetics, OGM revealed additional aberrations, requiring further investigation of their potential clinical relevance.</p></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":"26 5","pages":"Pages 374-386"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S152515782400045X/pdfft?md5=6ccbe0e387e436a1141b6bbdb5dbbb66&pid=1-s2.0-S152515782400045X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152515782400045X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft-tissue and bone tumors represent a heterogeneous group of tumors encompassing more than 100 histologic subtypes today. Identifying genetic aberrations increasingly is important in these tumors for accurate diagnosis. Although gene mutations typically are detected by second-generation sequencing, the identification of structural variants (SVs) and copy number alterations (CNAs) remains challenging and requires various cytogenetic techniques including karyotyping, fluorescence in situ hybridization, and arrays, each with important limitations. Optical Genome Mapping (OGM), a non–sequencing-based technique for high-resolution detection of SVs and CNAs, was applied in a retrospective series of diagnostic soft-tissue and bone tumor samples. Sample preparation was successful in 38 of 53 cases, with the highest success rate in nonadipocytic soft-tissue tumors (24 of 27 cases; 89%). In 32 of 35 cases carrying a diagnostic SV or CNA, OGM identified the aberration (91%), including a POU2AF3::EWSR1 fusion in a round cell sarcoma and a translocation t(1;5)(p22;p15) in a myxoinflammatory fibroblastic sarcoma. Interestingly, OGM shed light on the genomic complexity underlying the various aberrations. In five samples, OGM showed that chains of rearrangements generated the diagnostic fusion, three of which involved chromoplexy. In addition, in nine samples, chromothripsis was causal to the formation of giant marker/ring/double-minute chromosomes. Finally, compared with standard-of-care cytogenetics, OGM revealed additional aberrations, requiring further investigation of their potential clinical relevance.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.