{"title":"On scheduling multiple parallel two-stage flowshops with Johnson’s Rule","authors":"Guangwei Wu, Fu Zuo, Feng Shi, Jianxin Wang","doi":"10.1007/s10878-024-01107-z","DOIUrl":null,"url":null,"abstract":"<p>It is well-known that the classical Johnson’s Rule leads to optimal schedules on a two-stage flowshop. However, it is still unclear how Johnson’s Rule would help in approximation algorithms for scheduling an arbitrary number of parallel two-stage flowshops with the objective of minimizing the makespan. Thus within the paper, we study the problem and propose a new efficient algorithm that incorporates Johnson’s Rule applied on each individual flowshop with a carefully designed job assignment process to flowshops. The algorithm is successfully shown to have a runtime <span>\\(O(n \\log n)\\)</span> and an approximation ratio 7/3, where <i>n</i> is the number of jobs. Compared with the recent PTAS result for the problem (Dong et al. in Eur J Oper Res 218(1):16–24, 2020), our algorithm has a larger approximation ratio, but it is more efficient in practice from the perspective of runtime.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"30 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01107-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that the classical Johnson’s Rule leads to optimal schedules on a two-stage flowshop. However, it is still unclear how Johnson’s Rule would help in approximation algorithms for scheduling an arbitrary number of parallel two-stage flowshops with the objective of minimizing the makespan. Thus within the paper, we study the problem and propose a new efficient algorithm that incorporates Johnson’s Rule applied on each individual flowshop with a carefully designed job assignment process to flowshops. The algorithm is successfully shown to have a runtime \(O(n \log n)\) and an approximation ratio 7/3, where n is the number of jobs. Compared with the recent PTAS result for the problem (Dong et al. in Eur J Oper Res 218(1):16–24, 2020), our algorithm has a larger approximation ratio, but it is more efficient in practice from the perspective of runtime.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.