{"title":"On sufficient conditions for Hamiltonicity of graphs, and beyond","authors":"Hechao Liu, Lihua You, Yufei Huang, Zenan Du","doi":"10.1007/s10878-024-01110-4","DOIUrl":null,"url":null,"abstract":"<p>Identifying certain conditions that ensure the Hamiltonicity of graphs is highly important and valuable due to the fact that determining whether a graph is Hamiltonian is an NP-complete problem.For a graph <i>G</i> with vertex set <i>V</i>(<i>G</i>) and edge set <i>E</i>(<i>G</i>), the first Zagreb index (<span>\\(M_{1}\\)</span>) and second Zagreb index (<span>\\(M_{2}\\)</span>) are defined as <span>\\(M_{1}(G)=\\sum \\limits _{v_{i}v_{j}\\in E(G)}(d_{G}(v_{i})+d_{G}(v_{j}))\\)</span> and <span>\\(M_{2}(G)=\\sum \\limits _{v_{i}v_{j}\\in E(G)}d_{G}(v_{i})d_{G}(v_{j})\\)</span>, where <span>\\(d_{G}(v_{i})\\)</span> denotes the degree of vertex <span>\\(v_{i}\\in V(G)\\)</span>. The difference of Zagreb indices (<span>\\(\\Delta M\\)</span>) of <i>G</i> is defined as <span>\\(\\Delta M(G)=M_{2}(G)-M_{1}(G)\\)</span>.In this paper, we try to look for the relationship between structural graph theory and chemical graph theory. We obtain some sufficient conditions, with regards to <span>\\(\\Delta M(G)\\)</span>, for graphs to be <i>k</i>-hamiltonian, traceable, <i>k</i>-edge-hamiltonian, <i>k</i>-connected, Hamilton-connected or <i>k</i>-path-coverable.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01110-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying certain conditions that ensure the Hamiltonicity of graphs is highly important and valuable due to the fact that determining whether a graph is Hamiltonian is an NP-complete problem.For a graph G with vertex set V(G) and edge set E(G), the first Zagreb index (\(M_{1}\)) and second Zagreb index (\(M_{2}\)) are defined as \(M_{1}(G)=\sum \limits _{v_{i}v_{j}\in E(G)}(d_{G}(v_{i})+d_{G}(v_{j}))\) and \(M_{2}(G)=\sum \limits _{v_{i}v_{j}\in E(G)}d_{G}(v_{i})d_{G}(v_{j})\), where \(d_{G}(v_{i})\) denotes the degree of vertex \(v_{i}\in V(G)\). The difference of Zagreb indices (\(\Delta M\)) of G is defined as \(\Delta M(G)=M_{2}(G)-M_{1}(G)\).In this paper, we try to look for the relationship between structural graph theory and chemical graph theory. We obtain some sufficient conditions, with regards to \(\Delta M(G)\), for graphs to be k-hamiltonian, traceable, k-edge-hamiltonian, k-connected, Hamilton-connected or k-path-coverable.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.