Existence, uniqueness and regularity for a semilinear stochastic subdiffusion with integrated multiplicative noise

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ziqiang Li, Yubin Yan
{"title":"Existence, uniqueness and regularity for a semilinear stochastic subdiffusion with integrated multiplicative noise","authors":"Ziqiang Li, Yubin Yan","doi":"10.1007/s13540-024-00244-w","DOIUrl":null,"url":null,"abstract":"<p>We investigate a semilinear stochastic time-space fractional subdiffusion equation driven by fractionally integrated multiplicative noise. The equation involves the <span>\\(\\psi \\)</span>-Caputo derivative of order <span>\\(\\alpha \\in (0,1)\\)</span> and the spectral fractional Laplacian of order <span>\\(\\beta \\in (\\frac{1}{2},1]\\)</span>. The existence and uniqueness of the mild solution are proved in a suitable Banach space by using the Banach contraction mapping principle. The spatial and temporal regularities of the mild solution are established in terms of the smoothing properties of the solution operators.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00244-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a semilinear stochastic time-space fractional subdiffusion equation driven by fractionally integrated multiplicative noise. The equation involves the \(\psi \)-Caputo derivative of order \(\alpha \in (0,1)\) and the spectral fractional Laplacian of order \(\beta \in (\frac{1}{2},1]\). The existence and uniqueness of the mild solution are proved in a suitable Banach space by using the Banach contraction mapping principle. The spatial and temporal regularities of the mild solution are established in terms of the smoothing properties of the solution operators.

具有综合乘法噪声的半线性随机子扩散的存在性、唯一性和正则性
我们研究了一个由分数积分乘法噪声驱动的半线性随机时空分数亚扩散方程。该方程涉及阶数为(\alpha \in (0,1))的卡普托导数和阶数为(\beta \in (\frac{1}{2},1] \)的谱分数拉普拉奇。利用巴拿赫收缩映射原理,在合适的巴拿赫空间中证明了温和解的存在性和唯一性。根据解算子的平滑特性,建立了温和解的空间和时间规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信