GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Young-Moo Byun, Jejoong Yoo
{"title":"GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC","authors":"Young-Moo Byun,&nbsp;Jejoong Yoo","doi":"10.1002/qua.27345","DOIUrl":null,"url":null,"abstract":"<p>Quasiparticle self-consistent many-body perturbation theory (MBPT) methods that update both eigenvalues and eigenvectors can calculate the excited-state properties of molecular systems without depending on the choice of starting points. However, those methods are computationally intensive even on modern multi-core central processing units (CPUs) and thus typically limited to small systems. Many-core accelerators such as graphics processing units (GPUs) may be able to boost the performance of those methods without losing accuracy, making starting-point-independent MBPT methods applicable to large systems. Here, we GPU accelerate MOLGW, a Gaussian-based MBPT code for molecules, with open accelerators (OpenACC) and achieve speedups of up to <math>\n <semantics>\n <mrow>\n <mn>9</mn>\n <mo>.</mo>\n <mn>7</mn>\n <mo>×</mo>\n </mrow>\n <annotation>$$ 9.7\\times $$</annotation>\n </semantics></math> over 32 open multi-processing (OpenMP) CPU threads.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27345","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quasiparticle self-consistent many-body perturbation theory (MBPT) methods that update both eigenvalues and eigenvectors can calculate the excited-state properties of molecular systems without depending on the choice of starting points. However, those methods are computationally intensive even on modern multi-core central processing units (CPUs) and thus typically limited to small systems. Many-core accelerators such as graphics processing units (GPUs) may be able to boost the performance of those methods without losing accuracy, making starting-point-independent MBPT methods applicable to large systems. Here, we GPU accelerate MOLGW, a Gaussian-based MBPT code for molecules, with open accelerators (OpenACC) and achieve speedups of up to 9 . 7 × $$ 9.7\times $$ over 32 open multi-processing (OpenMP) CPU threads.

Abstract Image

利用 OpenACC 在 GPU 上加速 MOLGW 中的多体扰动理论方法
同时更新特征值和特征向量的准粒子自洽多体扰动理论(MBPT)方法可以计算分子系统的激发态特性,而不依赖于起点的选择。然而,即使在现代多核中央处理器(CPU)上,这些方法的计算量也很大,因此通常仅限于小型系统。图形处理器(GPU)等多核加速器或许能在不损失精度的情况下提高这些方法的性能,从而使与起点无关的 MBPT 方法适用于大型系统。在这里,我们利用开放加速器(OpenACC)对基于高斯的分子 MBPT 代码 MOLGW 进行了 GPU 加速,并实现了高达 9 . 7 × $$ 9.7/times $$ 的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信