A fast implementation of the Monster group

Martin Seysen
{"title":"A fast implementation of the Monster group","authors":"Martin Seysen","doi":"10.1016/j.jaca.2024.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>M</mi></math></span> be the Monster group, which is the largest sporadic finite simple group, and has first been constructed in 1982 by Griess. In 1985 Conway has constructed a 196884-dimensional rational representation <em>ρ</em> of <span><math><mi>M</mi></math></span> with matrix entries in <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>. We describe a new and very fast algorithm for performing the group operation in <span><math><mi>M</mi></math></span>.</p><p>For an odd integer <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the representation <em>ρ</em> with matrix entries taken modulo <em>p</em>. We use a generating set Γ of <span><math><mi>M</mi></math></span>, such that the operation of a generator in Γ on an element of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> can easily be computed.</p><p>We construct a triple <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span> of elements of the module <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>15</mn></mrow></msub></math></span>, such that an unknown <span><math><mi>g</mi><mo>∈</mo><mi>M</mi></math></span> can be effectively computed as a word in Γ from the images <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mi>g</mi><mo>)</mo></math></span>.</p><p>Our new algorithm based on this idea multiplies two random elements of <span><math><mi>M</mi></math></span> in less than 30 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz. This is more than 100000 times faster than estimated by Wilson in 2013.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"9 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000020/pdfft?md5=6274b39ef3a5da0cdf30796d2fbfed44&pid=1-s2.0-S2772827724000020-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be the Monster group, which is the largest sporadic finite simple group, and has first been constructed in 1982 by Griess. In 1985 Conway has constructed a 196884-dimensional rational representation ρ of M with matrix entries in Z[12]. We describe a new and very fast algorithm for performing the group operation in M.

For an odd integer p>1 let ρp be the representation ρ with matrix entries taken modulo p. We use a generating set Γ of M, such that the operation of a generator in Γ on an element of ρp can easily be computed.

We construct a triple (v1,v+,v) of elements of the module ρ15, such that an unknown gM can be effectively computed as a word in Γ from the images (v1g,v+g,vg).

Our new algorithm based on this idea multiplies two random elements of M in less than 30 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz. This is more than 100000 times faster than estimated by Wilson in 2013.

快速实现怪物群
让 M 成为怪兽群,它是最大的零星有限单群,1982 年由 Griess 首次构造。1985 年,Conway 构建了 M 的 196884 维有理表示 ρ,其矩阵项为 Z[12]。对于奇整数 p>1,让 ρp 表示矩阵项取模 p 的表示 ρ。我们使用 M 的生成集 Γ,这样 Γ 中的生成器对 ρp 元素的运算就可以很容易地计算出来。我们为模块 ρ15 的元素构建了一个三元组 (v1,v+,v-),这样一个未知的 g∈M 就可以有效地通过图像 (v1g,v+g,v-g) 计算出 Γ 中的一个字。这比威尔逊在 2013 年估计的速度快 10 万倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信