Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa
{"title":"A Bayesian optimization R package for multitrait parental selection.","authors":"Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa","doi":"10.1002/tpg2.20433","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20433"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.