Zailin Fu, Dingsheng Wang, Caiyun Zheng, Minghua Xie, Yifang Chen, Yi Zhou, Yan Huang, Ying Song, Weiyong Hong
{"title":"Elimination of intracellular Ca<sup>2+</sup> overload by BAPTA‑AM liposome nanoparticles: A promising treatment for acute pancreatitis.","authors":"Zailin Fu, Dingsheng Wang, Caiyun Zheng, Minghua Xie, Yifang Chen, Yi Zhou, Yan Huang, Ying Song, Weiyong Hong","doi":"10.3892/ijmm.2024.5358","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2‑bis(2‑aminophenoxy)ethane‑N,N,N',N'‑tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA‑AM), a cell‑permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models <i>in vitro</i>, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and <i>in vivo</i>, intra‑ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA‑AM‑loaded LN (BLN) effectively and rapidly eliminated excessive Ca<sup>2+</sup> and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF‑α, IL‑6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca<sup>2+</sup> overload in patients with AP.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5358","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2‑bis(2‑aminophenoxy)ethane‑N,N,N',N'‑tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA‑AM), a cell‑permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intra‑ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA‑AM‑loaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF‑α, IL‑6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.