{"title":"Effects of autoimmune abnormalities on fertility and placental morphology in mice.","authors":"Risa Yamanaka, Osamu Ichii, Teppei Nakamura, Yuki Otani, Takashi Namaba, Yasuhiro Kon","doi":"10.1080/08916934.2024.2319209","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-<i>Fas<sup>lpr/lpr</sup></i> mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-<i>Fas<sup>lpr/lpr</sup></i> at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (<i>Krt15, Slc7a3</i>, <i>Sprr2a3</i>) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (<i>Ccl5</i>, <i>Cxcl9</i>) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"57 1","pages":"2319209"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2024.2319209","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-Faslpr/lpr mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-Faslpr/lpr at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (Krt15, Slc7a3, Sprr2a3) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (Ccl5, Cxcl9) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.