Diameter estimates in Kähler geometry

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bin Guo, Duong H. Phong, Jian Song, Jacob Sturm
{"title":"Diameter estimates in Kähler geometry","authors":"Bin Guo,&nbsp;Duong H. Phong,&nbsp;Jian Song,&nbsp;Jacob Sturm","doi":"10.1002/cpa.22196","DOIUrl":null,"url":null,"abstract":"<p>Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long-standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite-time and long-time solutions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for L $L^\infty$ estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long-standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite-time and long-time solutions.

凯勒几何中的直径估算
本文建立了凯勒度量的直径估计,它只需要一个熵限,而不需要里奇曲率的下限。证明建立在最近的蒙日-安培方程 L∞$L^\infty$ 估计的 PDE 技术基础上,关键的改进是允许严格大于一维的体积形式退化。因此,我们解决了Kähler-Ricci流的均匀直径边界和Gromov-Hausdorff收敛这个长期存在的有限时间和长期解的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信