{"title":"AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using Mathematical Programming","authors":"Siva Satyendra Sahoo, Salim Ullah, Akash Kumar","doi":"10.1145/3648694","DOIUrl":null,"url":null,"abstract":"<p>With the increasing application of machine learning (ML) algorithms in embedded systems, there is a rising necessity to design low-cost computer arithmetic for these resource-constrained systems. As a result, emerging models of computation, such as approximate and stochastic computing, that leverage the inherent error-resilience of such algorithms are being actively explored for implementing ML inference on resource-constrained systems. Approximate computing (AxC) aims to provide disproportionate gains in the power, performance, and area (PPA) of an application by allowing some level of reduction in its behavioral accuracy (BEHAV). Using approximate operators (AxOs) for computer arithmetic forms one of the more prevalent methods of implementing AxC. AxOs provide the additional scope for finer granularity of optimization, compared to only precision scaling of computer arithmetic. To this end, the design of platform-specific and cost-efficient approximate operators forms an important research goal. Recently, multiple works have reported the use of AI/ML-based approaches for synthesizing novel FPGA-based AxOs. However, most of such works limit the use of AI/ML to designing ML-based surrogate functions that are used during iterative optimization processes. To this end, we propose a novel data analysis-driven mathematical programming-based approach to synthesizing approximate operators for FPGAs. Specifically, we formulate <i>mixed integer quadratically constrained programs</i>\nbased on the results of correlation analysis of the characterization data and use the solutions to enable a more directed search approach for evolutionary optimization algorithms. Compared to traditional evolutionary algorithms-based optimization, we report up to 21% improvement in the hypervolume, for joint optimization of PPA and BEHAV, in the design of signed 8-bit multipliers. Further, we report up to 27% better hypervolume than other state-of-the-art approaches to DSE for FPGA-based application-specific AxOs.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648694","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing application of machine learning (ML) algorithms in embedded systems, there is a rising necessity to design low-cost computer arithmetic for these resource-constrained systems. As a result, emerging models of computation, such as approximate and stochastic computing, that leverage the inherent error-resilience of such algorithms are being actively explored for implementing ML inference on resource-constrained systems. Approximate computing (AxC) aims to provide disproportionate gains in the power, performance, and area (PPA) of an application by allowing some level of reduction in its behavioral accuracy (BEHAV). Using approximate operators (AxOs) for computer arithmetic forms one of the more prevalent methods of implementing AxC. AxOs provide the additional scope for finer granularity of optimization, compared to only precision scaling of computer arithmetic. To this end, the design of platform-specific and cost-efficient approximate operators forms an important research goal. Recently, multiple works have reported the use of AI/ML-based approaches for synthesizing novel FPGA-based AxOs. However, most of such works limit the use of AI/ML to designing ML-based surrogate functions that are used during iterative optimization processes. To this end, we propose a novel data analysis-driven mathematical programming-based approach to synthesizing approximate operators for FPGAs. Specifically, we formulate mixed integer quadratically constrained programs
based on the results of correlation analysis of the characterization data and use the solutions to enable a more directed search approach for evolutionary optimization algorithms. Compared to traditional evolutionary algorithms-based optimization, we report up to 21% improvement in the hypervolume, for joint optimization of PPA and BEHAV, in the design of signed 8-bit multipliers. Further, we report up to 27% better hypervolume than other state-of-the-art approaches to DSE for FPGA-based application-specific AxOs.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.