AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using Mathematical Programming

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Siva Satyendra Sahoo, Salim Ullah, Akash Kumar
{"title":"AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using Mathematical Programming","authors":"Siva Satyendra Sahoo, Salim Ullah, Akash Kumar","doi":"10.1145/3648694","DOIUrl":null,"url":null,"abstract":"<p>With the increasing application of machine learning (ML) algorithms in embedded systems, there is a rising necessity to design low-cost computer arithmetic for these resource-constrained systems. As a result, emerging models of computation, such as approximate and stochastic computing, that leverage the inherent error-resilience of such algorithms are being actively explored for implementing ML inference on resource-constrained systems. Approximate computing (AxC) aims to provide disproportionate gains in the power, performance, and area (PPA) of an application by allowing some level of reduction in its behavioral accuracy (BEHAV). Using approximate operators (AxOs) for computer arithmetic forms one of the more prevalent methods of implementing AxC. AxOs provide the additional scope for finer granularity of optimization, compared to only precision scaling of computer arithmetic. To this end, the design of platform-specific and cost-efficient approximate operators forms an important research goal. Recently, multiple works have reported the use of AI/ML-based approaches for synthesizing novel FPGA-based AxOs. However, most of such works limit the use of AI/ML to designing ML-based surrogate functions that are used during iterative optimization processes. To this end, we propose a novel data analysis-driven mathematical programming-based approach to synthesizing approximate operators for FPGAs. Specifically, we formulate <i>mixed integer quadratically constrained programs</i>\nbased on the results of correlation analysis of the characterization data and use the solutions to enable a more directed search approach for evolutionary optimization algorithms. Compared to traditional evolutionary algorithms-based optimization, we report up to 21% improvement in the hypervolume, for joint optimization of PPA and BEHAV, in the design of signed 8-bit multipliers. Further, we report up to 27% better hypervolume than other state-of-the-art approaches to DSE for FPGA-based application-specific AxOs.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648694","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing application of machine learning (ML) algorithms in embedded systems, there is a rising necessity to design low-cost computer arithmetic for these resource-constrained systems. As a result, emerging models of computation, such as approximate and stochastic computing, that leverage the inherent error-resilience of such algorithms are being actively explored for implementing ML inference on resource-constrained systems. Approximate computing (AxC) aims to provide disproportionate gains in the power, performance, and area (PPA) of an application by allowing some level of reduction in its behavioral accuracy (BEHAV). Using approximate operators (AxOs) for computer arithmetic forms one of the more prevalent methods of implementing AxC. AxOs provide the additional scope for finer granularity of optimization, compared to only precision scaling of computer arithmetic. To this end, the design of platform-specific and cost-efficient approximate operators forms an important research goal. Recently, multiple works have reported the use of AI/ML-based approaches for synthesizing novel FPGA-based AxOs. However, most of such works limit the use of AI/ML to designing ML-based surrogate functions that are used during iterative optimization processes. To this end, we propose a novel data analysis-driven mathematical programming-based approach to synthesizing approximate operators for FPGAs. Specifically, we formulate mixed integer quadratically constrained programs based on the results of correlation analysis of the characterization data and use the solutions to enable a more directed search approach for evolutionary optimization algorithms. Compared to traditional evolutionary algorithms-based optimization, we report up to 21% improvement in the hypervolume, for joint optimization of PPA and BEHAV, in the design of signed 8-bit multipliers. Further, we report up to 27% better hypervolume than other state-of-the-art approaches to DSE for FPGA-based application-specific AxOs.

AxOMaP:利用数学编程设计基于 FPGA 的近似算术运算器
随着机器学习(ML)算法在嵌入式系统中的应用日益广泛,为这些资源受限的系统设计低成本计算机运算的必要性也日益凸显。因此,人们正在积极探索近似计算和随机计算等新兴计算模型,以利用这些算法固有的抗错能力,在资源受限的系统中实现 ML 推断。近似计算(AxC)旨在通过在一定程度上降低应用的行为准确性(BEHAV),使应用的功耗、性能和面积(PPA)获得不成比例的提升。在计算机运算中使用近似算子(AxOs)是实现 AxC 的最普遍方法之一。与计算机运算的精度缩放相比,近似算子为更精细的优化提供了额外的空间。为此,设计特定平台且具有成本效益的近似算子成为一项重要的研究目标。最近,有多项研究报告了使用基于人工智能/ML 的方法合成基于 FPGA 的新型近似算子。然而,大多数此类研究都将人工智能/近似算子的使用局限于设计基于近似算子的代用函数,这些函数在迭代优化过程中使用。为此,我们提出了一种基于数据分析驱动的数学编程新方法,用于合成 FPGA 的近似算子。具体来说,我们根据表征数据的相关性分析结果制定混合整数二次约束程序,并利用这些解决方案为进化优化算法提供更有方向性的搜索方法。与基于进化算法的传统优化方法相比,我们发现在设计带符号 8 位乘法器时,通过 PPA 和 BEHAV 的联合优化,超体积提高了 21%。此外,对于基于 FPGA 的特定应用 AxO,我们报告的超体积比其他最先进的 DSE 方法提高了 27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信