{"title":"Modular forms of half-integral weight on exceptional groups","authors":"Spencer Leslie, Aaron Pollack","doi":"10.1112/s0010437x23007686","DOIUrl":null,"url":null,"abstract":"<p>We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\pm }1$</span></span></img></span></span>. We analyze the minimal modular form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Theta _{F_4}$</span></span></img></span></span> on the double cover of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$F_4$</span></span></img></span></span>, following Loke–Savin and Ginzburg. Using <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Theta _{F_4}$</span></span></img></span></span>, we define a modular form of weight <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\tfrac {1}{2}$</span></span></img></span></span> on (the double cover of) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$G_2$</span></span></img></span></span>. We prove that the Fourier coefficients of this modular form on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$G_2$</span></span></img></span></span> see the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221201522763-0676:S0010437X23007686:S0010437X23007686_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-torsion in the narrow class groups of totally real cubic fields.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007686","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke–Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.