Junghun Jo , Swati Panda , Nayoon Kim , Sugato Hajra , Subhin Hwang , Heewon Song , Jyoti Shukla , Basanta K. Panigrahi , Venkateswaran Vivekananthan , Jiho Kim , P. Ganga Raju Achary , Hohyum Keum , Hoe Joon Kim
{"title":"Hybrid nanogenerator for self-powered object recognition","authors":"Junghun Jo , Swati Panda , Nayoon Kim , Sugato Hajra , Subhin Hwang , Heewon Song , Jyoti Shukla , Basanta K. Panigrahi , Venkateswaran Vivekananthan , Jiho Kim , P. Ganga Raju Achary , Hohyum Keum , Hoe Joon Kim","doi":"10.1016/j.jsamd.2024.100693","DOIUrl":null,"url":null,"abstract":"<div><p>Energy harvesting systems, including piezoelectric (PENG), triboelectric (TENG), and pyroelectric (PYNG) nanogenerator technologies, have emerged as one of the major future energy solutions. Energy harvesting eliminates the need for conventional batteries and encourages eco-friendly alternatives. This study reports hydrothermally synthesized BaTiO<sub>3</sub> (BTO) particles with a tetragonal symmetry for hybrid energy harvesting. BTO particles are incorporated with PDMS at various wt% to form a flexible composite film. The 15 wt% BTO-PDMS composite/Al hybrid device (PENG-TENG) produces a peak voltage of 100 V, a current of 980 nA, and a charge of 17 nC, generating a peak power output of 33.64 μW at 100 MΩ. Furthermore, integrating this HNG (external hybridization) yielded an output of 101 V and 980 nA, demonstrating practical applicability. HNG is also employed to interact by touching various objects at different temperatures. The pyroelectric behavior of BTO allows direct thermal sensing of the object. The signals produced are processed using a convolutional neural network (CNN)-based object recognition system, which achieved a remarkable classification accuracy of 99.27% for various objects. External hybridization improves energy efficiency, representing a huge step forward in sustainable technology applications. This research paves the way for developing hybrid energy harvesters and can be employed further for extremely precise battery-free object recognition systems. This unique hybrid nanogenerator, which combines pyroelectric, piezoelectric, and triboelectric components, represents a new method of self-powered object detection. External hybridization improves energy efficiency, representing a huge step forward in sustainable technology applications.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 2","pages":"Article 100693"},"PeriodicalIF":6.7000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000248/pdfft?md5=9a7b11916cee46e062385f421cb0f091&pid=1-s2.0-S2468217924000248-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000248","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy harvesting systems, including piezoelectric (PENG), triboelectric (TENG), and pyroelectric (PYNG) nanogenerator technologies, have emerged as one of the major future energy solutions. Energy harvesting eliminates the need for conventional batteries and encourages eco-friendly alternatives. This study reports hydrothermally synthesized BaTiO3 (BTO) particles with a tetragonal symmetry for hybrid energy harvesting. BTO particles are incorporated with PDMS at various wt% to form a flexible composite film. The 15 wt% BTO-PDMS composite/Al hybrid device (PENG-TENG) produces a peak voltage of 100 V, a current of 980 nA, and a charge of 17 nC, generating a peak power output of 33.64 μW at 100 MΩ. Furthermore, integrating this HNG (external hybridization) yielded an output of 101 V and 980 nA, demonstrating practical applicability. HNG is also employed to interact by touching various objects at different temperatures. The pyroelectric behavior of BTO allows direct thermal sensing of the object. The signals produced are processed using a convolutional neural network (CNN)-based object recognition system, which achieved a remarkable classification accuracy of 99.27% for various objects. External hybridization improves energy efficiency, representing a huge step forward in sustainable technology applications. This research paves the way for developing hybrid energy harvesters and can be employed further for extremely precise battery-free object recognition systems. This unique hybrid nanogenerator, which combines pyroelectric, piezoelectric, and triboelectric components, represents a new method of self-powered object detection. External hybridization improves energy efficiency, representing a huge step forward in sustainable technology applications.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.