On Rate of Convergence for Universality Limits

IF 0.8 3区 数学 Q2 MATHEMATICS
Roman Bessonov
{"title":"On Rate of Convergence for Universality Limits","authors":"Roman Bessonov","doi":"10.1007/s00020-024-02757-8","DOIUrl":null,"url":null,"abstract":"<p>Given a probability measure <span>\\(\\mu \\)</span> on the unit circle <span>\\({\\mathbb {T}}\\)</span>, consider the reproducing kernel <span>\\(k_{\\mu ,n}(z_1, z_2)\\)</span> in the space of polynomials of degree at most <span>\\(n-1\\)</span> with the <span>\\(L^2(\\mu )\\)</span>–inner product. Let <span>\\(u, v \\in {\\mathbb {C}}\\)</span>. It is known that under mild assumptions on <span>\\(\\mu \\)</span> near <span>\\(\\zeta \\in \\mathbb {T}\\)</span>, the ratio <span>\\(k_{\\mu ,n}(\\zeta e^{u/n}, \\zeta e^{v/n})/k_{\\mu ,n}(\\zeta , \\zeta )\\)</span> converges to a universal limit <i>S</i>(<i>u</i>, <i>v</i>) as <span>\\(n \\rightarrow \\infty \\)</span>. We give an estimate for the rate of this convergence for measures <span>\\(\\mu \\)</span> with finite logarithmic integral.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02757-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a probability measure \(\mu \) on the unit circle \({\mathbb {T}}\), consider the reproducing kernel \(k_{\mu ,n}(z_1, z_2)\) in the space of polynomials of degree at most \(n-1\) with the \(L^2(\mu )\)–inner product. Let \(u, v \in {\mathbb {C}}\). It is known that under mild assumptions on \(\mu \) near \(\zeta \in \mathbb {T}\), the ratio \(k_{\mu ,n}(\zeta e^{u/n}, \zeta e^{v/n})/k_{\mu ,n}(\zeta , \zeta )\) converges to a universal limit S(uv) as \(n \rightarrow \infty \). We give an estimate for the rate of this convergence for measures \(\mu \) with finite logarithmic integral.

Abstract Image

论普遍性极限的收敛率
给定单位圆\({\mathbb {T}}\)上的概率度量\(\mu \),考虑阶数最多为\(n-1)的多项式空间中具有\(L^2(\mu )\)-内积的再现核\(k_{\mu ,n}(z_1, z_2)\)。让 \(u, v 在 {\mathbb {C}}\).众所周知,在靠近 \(\zeta \in \mathbb {T}\) 的 \(\mu \) 的温和假设下,比率 \(k_\{mu ,n}(\zeta e^{u/n}、\zeta e^{v/n})/k_{\mu ,n}(\zeta , \zeta )\) 收敛到一个普遍的极限 S(u, v) as \(n \rightarrow \infty \)。对于具有有限对数积分的度量 \(\mu \),我们给出了这种收敛速率的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信