Classification and Sizing of Surface Defects in Pipelines Based on the Results of Combined Diagnostics by Ultrasonic, Eddy Current, and Visual Inspection Methods of Nondestructive Testing
IF 0.9 4区 材料科学Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
N. V. Krysko, S. V. Skrynnikov, N. A. Shchipakov, D. M. Kozlov, A. G. Kusyy
{"title":"Classification and Sizing of Surface Defects in Pipelines Based on the Results of Combined Diagnostics by Ultrasonic, Eddy Current, and Visual Inspection Methods of Nondestructive Testing","authors":"N. V. Krysko, S. V. Skrynnikov, N. A. Shchipakov, D. M. Kozlov, A. G. Kusyy","doi":"10.1134/S1061830923601022","DOIUrl":null,"url":null,"abstract":"<p>The issues of classification and characterization of surface operational defects according to the results of ultrasonic, eddy current, and visual inspection methods of nondestructive testing are considered. At the same time, the visual inspection method was realized with the use of a television inspection camera equipped with a computer vision function and a laser triangulation sensor. The paper presents a dataset containing 5760 images of pipelines with and without pitting corrosion. A convolutional neural network (CNN) is presented that was applied to classify the images obtained from the TV inspection camera into images without corrosion and images with pitting corrosion. The paper presents a dataset containing 269 measurements of planar and volumetric surface defects. A model for surface defect sizing based on gradient boosting is presented. The paper develops an algorithm for classification and sizing of surface defects in complex diagnostics in which the obtained models are applied, and determines the accuracy of this algorithm in the RMSE metric, which was calculated within the studied test dataset and amounted to 0.011 mm.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830923601022","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The issues of classification and characterization of surface operational defects according to the results of ultrasonic, eddy current, and visual inspection methods of nondestructive testing are considered. At the same time, the visual inspection method was realized with the use of a television inspection camera equipped with a computer vision function and a laser triangulation sensor. The paper presents a dataset containing 5760 images of pipelines with and without pitting corrosion. A convolutional neural network (CNN) is presented that was applied to classify the images obtained from the TV inspection camera into images without corrosion and images with pitting corrosion. The paper presents a dataset containing 269 measurements of planar and volumetric surface defects. A model for surface defect sizing based on gradient boosting is presented. The paper develops an algorithm for classification and sizing of surface defects in complex diagnostics in which the obtained models are applied, and determines the accuracy of this algorithm in the RMSE metric, which was calculated within the studied test dataset and amounted to 0.011 mm.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).