{"title":"Reaction-diffusion equations on metric graphs with edge noise","authors":"E. Sikolya","doi":"10.1007/s10476-024-00006-z","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in \n[14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from \n[15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. </p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00006-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00006-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in
[14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from
[15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.