A machine reading comprehension framework for recognizing emotion cause in conversations

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiajun Zou , Yexuan Zhang , Sixing Wu , Jinshuai Yang , Xuanmei Qin , Lizhi Ying , Minghu Jiang , Yongfeng Huang
{"title":"A machine reading comprehension framework for recognizing emotion cause in conversations","authors":"Jiajun Zou ,&nbsp;Yexuan Zhang ,&nbsp;Sixing Wu ,&nbsp;Jinshuai Yang ,&nbsp;Xuanmei Qin ,&nbsp;Lizhi Ying ,&nbsp;Minghu Jiang ,&nbsp;Yongfeng Huang","doi":"10.1016/j.knosys.2024.111532","DOIUrl":null,"url":null,"abstract":"<div><p><strong>R</strong>ecognizing <strong>E</strong>motion <strong>C</strong>ause in <strong>C</strong>onversations (<strong>RECC</strong>) is a key issue in modeling human cognitive processes, involving <strong>C</strong>onversational <strong>C</strong>ausal <strong>E</strong>motion <strong>E</strong>ntailment task (<span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>) and <strong>C</strong>onversational <strong>C</strong>ausal <strong>S</strong>pan <strong>E</strong>xtraction task (<span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>S</mi><mi>E</mi></mrow></math></span>). Previous emotion cause extraction research has been concentrated at the clause level, detecting if the cause is in the text, not describing the underlying causes in texts well. In order to address this issue, we suggest a novel approach that can recognize emotion cause spans. These spans can represent or imply the causes for controlling emotions. In this paper, we use a <strong>M</strong>achine <strong>R</strong>eading <strong>C</strong>omprehension framework to <strong>R</strong>ecognize the <strong>E</strong>motion <strong>C</strong>ause in <strong>C</strong>onversations (<strong>MRC-RECC</strong>), at both the span level and clause level simultaneously. Specifically, we use two types of queries to build the associations between the two different subtasks: emotion causal entailment task and emotion causal span extraction task. Our framework can recognize emotion cause more effectively by using joint learning to make these two tasks complement each other. Experiments demonstrate that our <strong>MRC-RECC</strong> provides state-of-the-art performances, which can reason more emotion causes in conversation texts. The code can be found at <span>https://github.com/Guangzidetiaoyue/MRC-RECCON</span><svg><path></path></svg>.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"289 ","pages":"Article 111532"},"PeriodicalIF":7.2000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124001679","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recognizing Emotion Cause in Conversations (RECC) is a key issue in modeling human cognitive processes, involving Conversational Causal Emotion Entailment task (C2E2) and Conversational Causal Span Extraction task (C2SE). Previous emotion cause extraction research has been concentrated at the clause level, detecting if the cause is in the text, not describing the underlying causes in texts well. In order to address this issue, we suggest a novel approach that can recognize emotion cause spans. These spans can represent or imply the causes for controlling emotions. In this paper, we use a Machine Reading Comprehension framework to Recognize the Emotion Cause in Conversations (MRC-RECC), at both the span level and clause level simultaneously. Specifically, we use two types of queries to build the associations between the two different subtasks: emotion causal entailment task and emotion causal span extraction task. Our framework can recognize emotion cause more effectively by using joint learning to make these two tasks complement each other. Experiments demonstrate that our MRC-RECC provides state-of-the-art performances, which can reason more emotion causes in conversation texts. The code can be found at https://github.com/Guangzidetiaoyue/MRC-RECCON.

识别对话中情绪起因的机器阅读理解框架
识别对话中的动作起因()是人类认知过程建模的一个关键问题,其中涉及对话起因动作裁剪任务()和对话起因泛提取任务()。以往的情感原因提取研究主要集中在分句层面,检测文本中是否存在原因,这可能无法很好地描述文本中的潜在原因。为了解决这个问题,我们提出了一种可以识别情感原因跨度的新方法。这些跨度通常可以代表或暗示控制情绪的原因。在本文中,我们使用一个机器阅读理解框架来同时在跨度和分句两个层面上识别对话()中的动因。具体来说,我们使用两类查询来建立两个不同子任务之间的关联:情感因果蕴含任务和情感因果跨度提取任务。我们的框架通过使用联合学习使这两个任务互为补充,从而更有效地识别情感原因。实验证明,我们的框架具有最先进的性能,可以在对话文本中推理出更多的情感原因。代码可在以下网址找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信