On strict polynomial functors with bounded domain

IF 0.8 4区 数学 Q2 MATHEMATICS
Marcin Chałupnik, Patryk Jaśniewski
{"title":"On strict polynomial functors with bounded domain","authors":"Marcin Chałupnik, Patryk Jaśniewski","doi":"10.4310/hha.2024.v26.n1.a6","DOIUrl":null,"url":null,"abstract":"$\\def\\Pdn\\{\\mathcal{P}_{d,n}}$We introduce a new functor category: the category $\\Pdn$ of strict polynomial functors of degree $d$ with domain of dimension bounded by $n$. It is equivalent to the category of finite dimensional modules over the Schur algebra $S(n,d)$, hence it allows one to apply the tools available in functor categories to representations of the algebraic group $\\mathrm{GL}_n$. We investigate in detail the homological algebra in $\\Pdn$ for $d = p$, where $p \\gt 0$ is the characteristic of a ground field. We also establish equivalences between certain subcategories of $\\Pdn\\textrm{’s}$ which resemble the Spanier–Whitehead duality in stable homotopy theory.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\Pdn\{\mathcal{P}_{d,n}}$We introduce a new functor category: the category $\Pdn$ of strict polynomial functors of degree $d$ with domain of dimension bounded by $n$. It is equivalent to the category of finite dimensional modules over the Schur algebra $S(n,d)$, hence it allows one to apply the tools available in functor categories to representations of the algebraic group $\mathrm{GL}_n$. We investigate in detail the homological algebra in $\Pdn$ for $d = p$, where $p \gt 0$ is the characteristic of a ground field. We also establish equivalences between certain subcategories of $\Pdn\textrm{’s}$ which resemble the Spanier–Whitehead duality in stable homotopy theory.
论域有界的严格多项式函数
$def\Pdn\{\mathcal{P}_{d,n}}$我们引入了一个新的函子范畴:度数为$d$、维域以$n$为界的严格多项式函子范畴$\Pdn$。它等价于舒尔代数 $S(n,d)$上的有限维模块范畴,因此它允许我们把函数范畴中的工具应用于代数群 $\mathrm{GL}_n$ 的表示。我们详细研究了 $d = p$ 时$\p \gt 0$ 的同调代数,其中$p \gt 0$ 是基域的特征。我们还在 $\Pdn\textrm{'s}$ 的某些子类之间建立了等价关系,这类似于稳定同调理论中的斯潘尼尔-怀特海德对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信