An elementary proof of the chromatic Smith fixed point theorem

Pub Date : 2024-02-21 DOI:10.4310/hha.2024.v26.n1.a8
William Balderrama, Nicholas J. Kuhn
{"title":"An elementary proof of the chromatic Smith fixed point theorem","authors":"William Balderrama, Nicholas J. Kuhn","doi":"10.4310/hha.2024.v26.n1.a8","DOIUrl":null,"url":null,"abstract":"A recent theorem by T. Barthel, M. Hausmann, N. Naumann, T. Nikolaus, J. Noel, and N. Stapleton says that if $A$ is a finite abelian $p$-group of rank $r$, then any finite $A$-space $X$ which is acyclic in the $n$th Morava $K$-theory with $n \\geqslant r$ will have its subspace $X^A$ of fixed points acyclic in the $(n-r)$th Morava Ktheory. This is a chromatic homotopy version of P. A. Smith’s classical theorem that if $X$ is acyclic in mod p homology, then so is $X^A$. The main purpose of this paper is to give an elementary proof of this new theorem that uses minimal background, and follows, as much as possible, the reasoning in standard proofs of the classical theorem. We also give a new fixed point theorem for finite dimensional, but possibly infinite, $A\\textrm{-CW}$ complexes, which suggests some open problems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent theorem by T. Barthel, M. Hausmann, N. Naumann, T. Nikolaus, J. Noel, and N. Stapleton says that if $A$ is a finite abelian $p$-group of rank $r$, then any finite $A$-space $X$ which is acyclic in the $n$th Morava $K$-theory with $n \geqslant r$ will have its subspace $X^A$ of fixed points acyclic in the $(n-r)$th Morava Ktheory. This is a chromatic homotopy version of P. A. Smith’s classical theorem that if $X$ is acyclic in mod p homology, then so is $X^A$. The main purpose of this paper is to give an elementary proof of this new theorem that uses minimal background, and follows, as much as possible, the reasoning in standard proofs of the classical theorem. We also give a new fixed point theorem for finite dimensional, but possibly infinite, $A\textrm{-CW}$ complexes, which suggests some open problems.
分享
查看原文
色度史密斯定点定理的基本证明
T. Barthel、M. Hausmann、N. Naumann、T. Nikolaus、J. Noel 和 N. Stapleton 最近提出了一个定理。斯特普尔顿说,如果 $A$ 是一个秩为 $r$ 的有限无性 $p$ 群,那么任何在第 $n$th 莫拉瓦 $K$ 理论中具有 $n \geqslant r$ 的非循环性的有限 $A$ 空间 $X$ 都会在第 $(n-r)$th 莫拉瓦 K 理论中具有非循环性的定点子空间 $X^A$。这是 P. A. Smith 经典定理的色度同调版本,即如果 $X$ 在 mod p 同调中是非周期性的,那么 $X^A$ 也是非周期性的。本文的主要目的是给出这一新定理的基本证明,它使用了最少的背景知识,并尽可能遵循经典定理标准证明中的推理。我们还给出了有限维,但可能是无限维的 $A\textrm{-CW}$ 复数的新定点定理,并提出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信