The Wufeng–Longmaxi shales, which were deposited during the Ordovician–Silurian transition in the southern Sichuan Basin, exhibit distinct lithofacies transitions. The shift from organic-rich siliceous shale to organic-poor mixed shale and argillaceous shale is attributed to the influences of the Hirnantian glaciation and the Kwangsian Orogeny. Nevertheless, debates persist regarding the mechanisms underlying these significant lithofacies transformations. This study employs sequence stratigraphy, petrology, and geochemical analysis of key wells to unveil crucial insights. The findings indicate: 1) the Wufeng Formation to the Long-1 Member could be divided into two third-order sequences; 2) the waterbody underwent a transition from anoxic and strongly restricted conditions to oxic and moderately restricted conditions; and 3) the trend in formation thickness changed from an E–W orientation to a NE–SW orientation. The results suggest that considerable sediment condensation and anoxia resulting from glacier melting in the early Rhuddanian played a pivotal role in the formation of organic-rich siliceous shale. During the Middle Rhuddanian–Aeronian, the accelerated uplift caused by the Kwangsian Orogeny offset the transgression induced by glacier melting, leading to shallow water conditions and increased terrigenous influx. This diluted the organic matter content in the sediment, and subsequent turbidity currents altered sediment composition, driving the lithofacies transformation into organic-poor mixed shale and argillaceous shale. The study posits that the sedimentary differentiation in the southern Sichuan Basin during the Ordovician–Silurian transition is linked to the initiation and progression of the far-field effects of the Kwangsian Orogeny.