Schmidt Rank and Singularities

Pub Date : 2024-02-20 DOI:10.1007/s11253-024-02270-6
David Kazhdan, Amichai Lampert, Alexander Polishchuk
{"title":"Schmidt Rank and Singularities","authors":"David Kazhdan, Amichai Lampert, Alexander Polishchuk","doi":"10.1007/s11253-024-02270-6","DOIUrl":null,"url":null,"abstract":"<p>We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–Hochster’s theorem [<i>J. Amer. Math. Soc.</i>, <b>33</b>, No. 1, 291–309 (2020), Theorem A].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02270-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–Hochster’s theorem [J. Amer. Math. Soc., 33, No. 1, 291–309 (2020), Theorem A].

分享
查看原文
施密特等级和奇异性
我们重温了将张量的施密特秩与某品种的编码维数联系起来的施密特定理,并将证明调整为任意特征的情况。我们还为同质多项式建立了一个更尖锐的结果,假定特征不分割度。此外,我们以此将同次多项式的施密特秩(即同度同次多项式集合)与相应超曲面(即超曲面交集)奇异点的标度联系起来。这给出了阿南扬-霍赫斯特定理的有效版本[《美国数学学会杂志》,33,第 1 期,291-309 (2020),定理 A]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信