David Kazhdan, Amichai Lampert, Alexander Polishchuk
{"title":"Schmidt Rank and Singularities","authors":"David Kazhdan, Amichai Lampert, Alexander Polishchuk","doi":"10.1007/s11253-024-02270-6","DOIUrl":null,"url":null,"abstract":"<p>We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–Hochster’s theorem [<i>J. Amer. Math. Soc.</i>, <b>33</b>, No. 1, 291–309 (2020), Theorem A].</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"234 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02270-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt the proof to the case of arbitrary characteristic. We also establish a sharper result for this kind for homogeneous polynomials, assuming that the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–Hochster’s theorem [J. Amer. Math. Soc., 33, No. 1, 291–309 (2020), Theorem A].
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.