{"title":"On the Theory of Moduli Of The Surfaces","authors":"","doi":"10.1007/s11253-024-02271-5","DOIUrl":null,"url":null,"abstract":"<p>We continue the development of the theory of moduli of the families of surfaces, in particular, of strings of various dimensions <em>m</em> = 1<em>,</em> 2<em>, . . . ,n −</em> 1 in Euclidean spaces <span> <span>\\({\\mathbb{R}}^{n}\\)</span> </span><em>, n</em> ≥ 2<em>.</em> On the basis of the proof of the lemma on the relationships between the moduli and Lebesgue measures, we prove the corresponding analog of the Fubini theorem in terms of moduli that extends the well-known Väisälä theorem for the families of curves to the families of surfaces of arbitrary dimensions. It should be emphasized that the crucial role in the proof of the mentioned lemma is played by a proposition on measurable (Borel) hulls of sets in Euclidean spaces. In addition, we also prove a similar lemma and a proposition for the families of concentric balls.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"127 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02271-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We continue the development of the theory of moduli of the families of surfaces, in particular, of strings of various dimensions m = 1, 2, . . . ,n − 1 in Euclidean spaces \({\mathbb{R}}^{n}\), n ≥ 2. On the basis of the proof of the lemma on the relationships between the moduli and Lebesgue measures, we prove the corresponding analog of the Fubini theorem in terms of moduli that extends the well-known Väisälä theorem for the families of curves to the families of surfaces of arbitrary dimensions. It should be emphasized that the crucial role in the proof of the mentioned lemma is played by a proposition on measurable (Borel) hulls of sets in Euclidean spaces. In addition, we also prove a similar lemma and a proposition for the families of concentric balls.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.