Smooth Rigidity for Higher-Dimensional Contact Anosov Flows

Pub Date : 2024-02-20 DOI:10.1007/s11253-024-02266-2
{"title":"Smooth Rigidity for Higher-Dimensional Contact Anosov Flows","authors":"","doi":"10.1007/s11253-024-02266-2","DOIUrl":null,"url":null,"abstract":"<p>We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [<em>Ergodic Theory Dynam. Syst.</em>, <strong>7</strong>, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are <em>C</em><sup>0</sup> conjugate, then they are <em>C</em><sup><em>r</em></sup> conjugate for some <em>r</em> ∈ [1<em>,</em> 2) or even <em>C</em><sup>∞</sup> conjugate under certain additional assumptions. This, e.g., applies to geodesic flows on compact Riemannian manifolds of 1<em>/</em>4-pinched negative sectional curvature. We can also use our result to recover Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02266-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [Ergodic Theory Dynam. Syst., 7, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are C0 conjugate, then they are Cr conjugate for some r ∈ [1, 2) or even C conjugate under certain additional assumptions. This, e.g., applies to geodesic flows on compact Riemannian manifolds of 1/4-pinched negative sectional curvature. We can also use our result to recover Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.

分享
查看原文
高维接触阿诺索夫流的平滑刚性
我们将匹配函数技术应用于满足串联假设的接触阿诺索夫流。这使我们能够推广费尔德曼和奥恩斯坦的三维刚性结果[《遍历理论动力学系统》,7,第 1 期,49-72(1987 年)]。也就是说,我们证明了如果两个此类阿诺索夫流是 C0 共轭的,那么对于某个 r∈[1, 2],它们就是 Cr 共轭的,甚至在某些附加假设下是 C∞ 共轭的。例如,这适用于具有 1/4 夹角负截面曲率的紧凑黎曼流形上的大地流。我们还可以用我们的结果来恢复哈门施塔特关于实双曲流形的标长谱刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信