Christine Mary Hallinan, Roger Ward, Graeme K Hart, Clair Sullivan, Nicole Pratt, Ashley P Ng, Daniel Capurro, Anton Van Der Vegt, Siaw-Teng Liaw, Oliver Daly, Blanca Gallego Luxan, David Bunker, Douglas Boyle
{"title":"Seamless EMR data access: Integrated governance, digital health and the OMOP-CDM","authors":"Christine Mary Hallinan, Roger Ward, Graeme K Hart, Clair Sullivan, Nicole Pratt, Ashley P Ng, Daniel Capurro, Anton Van Der Vegt, Siaw-Teng Liaw, Oliver Daly, Blanca Gallego Luxan, David Bunker, Douglas Boyle","doi":"10.1136/bmjhci-2023-100953","DOIUrl":null,"url":null,"abstract":"Objectives In this overview, we describe theObservational Medical Outcomes Partnership Common Data Model (OMOP-CDM), the established governance processes employed in EMR data repositories, and demonstrate how OMOP transformed data provides a lever for more efficient and secure access to electronic medical record (EMR) data by health service providers and researchers. Methods Through pseudonymisation and common data quality assessments, the OMOP-CDM provides a robust framework for converting complex EMR data into a standardised format. This allows for the creation of shared end-to-end analysis packages without the need for direct data exchange, thereby enhancing data security and privacy. By securely sharing de-identified and aggregated data and conducting analyses across multiple OMOP-converted databases, patient-level data is securely firewalled within its respective local site. Results By simplifying data management processes and governance, and through the promotion of interoperability, the OMOP-CDM supports a wide range of clinical, epidemiological, and translational research projects, as well as health service operational reporting. Discussion Adoption of the OMOP-CDM internationally and locally enables conversion of vast amounts of complex, and heterogeneous EMR data into a standardised structured data model, simplifies governance processes, and facilitates rapid repeatable cross-institution analysis through shared end-to-end analysis packages, without the sharing of data. Conclusion The adoption of the OMOP-CDM has the potential to transform health data analytics by providing a common platform for analysing EMR data across diverse healthcare settings. Data sharing not applicable as no datasets generated.","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"65 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2023-100953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives In this overview, we describe theObservational Medical Outcomes Partnership Common Data Model (OMOP-CDM), the established governance processes employed in EMR data repositories, and demonstrate how OMOP transformed data provides a lever for more efficient and secure access to electronic medical record (EMR) data by health service providers and researchers. Methods Through pseudonymisation and common data quality assessments, the OMOP-CDM provides a robust framework for converting complex EMR data into a standardised format. This allows for the creation of shared end-to-end analysis packages without the need for direct data exchange, thereby enhancing data security and privacy. By securely sharing de-identified and aggregated data and conducting analyses across multiple OMOP-converted databases, patient-level data is securely firewalled within its respective local site. Results By simplifying data management processes and governance, and through the promotion of interoperability, the OMOP-CDM supports a wide range of clinical, epidemiological, and translational research projects, as well as health service operational reporting. Discussion Adoption of the OMOP-CDM internationally and locally enables conversion of vast amounts of complex, and heterogeneous EMR data into a standardised structured data model, simplifies governance processes, and facilitates rapid repeatable cross-institution analysis through shared end-to-end analysis packages, without the sharing of data. Conclusion The adoption of the OMOP-CDM has the potential to transform health data analytics by providing a common platform for analysing EMR data across diverse healthcare settings. Data sharing not applicable as no datasets generated.