Bayesian composite $$L^p$$ -quantile regression

Pub Date : 2024-02-21 DOI:10.1007/s00184-024-00950-8
{"title":"Bayesian composite $$L^p$$ -quantile regression","authors":"","doi":"10.1007/s00184-024-00950-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p><span> <span>\\(L^p\\)</span> </span>-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, <span> <span>\\(p=1\\)</span> </span>, and expectiles, <span> <span>\\(p=2\\)</span> </span>, as special cases. This paper studies composite <span> <span>\\(L^p\\)</span> </span>-quantile regression, simultaneously extending single <span> <span>\\(L^p\\)</span> </span>-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00950-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

\(L^p\) -quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, \(p=1\) , and expectiles, \(p=2\) , as special cases. This paper studies composite \(L^p\) -quantile regression, simultaneously extending single \(L^p\) -quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.

分享
查看原文
贝叶斯综合 $$L^p$$ -quantile 回归
Abstract \(L^p\) -quantiles 是一类定义为非对称幂函数最小化的广义量值。它们包括量值(p=1)和期望值(p=2)作为特例。本文研究了复合量值回归,同时扩展了单一量值回归和复合量值回归。研究考虑了一种贝叶斯方法,利用了倾斜指数幂分布的新参数化。此外,回归系数的拉普拉斯先验允许进行变量选择。通过蒙特卡罗研究和对经验数据的应用,证明所提出的方法在大多数方面优于贝叶斯复合量化回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信