Observation of a phase transition from a continuous to a discrete time crystal

Phatthamon Kongkhambut, Jayson G. Cosme, Jim Skulte, Michelle A. Moreno Armijos, Ludwig Mathey, Andreas Hemmerich, Hans Keßler
{"title":"Observation of a phase transition from a continuous to a discrete time crystal","authors":"Phatthamon Kongkhambut, Jayson G. Cosme, Jim Skulte, Michelle A. Moreno Armijos, Ludwig Mathey, Andreas Hemmerich, Hans Keßler","doi":"arxiv-2402.12378","DOIUrl":null,"url":null,"abstract":"Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical\nmany-body states, that are characterized by robust self-sustained oscillations,\nemerging via spontaneous breaking of discrete or continuous time translation\nsymmetry. DTCs are periodically driven systems that oscillate with a\nsubharmonic of the drive, while CTCs are driven continuously and oscillate with\na system inherent frequency. Here, we explore a phase transition from a\ncontinuous time crystal to a discrete time crystal. A CTC with a characteristic\noscillation frequency $\\omega_\\mathrm{CTC}$ is prepared in a continuously\npumped atom-cavity system. Modulating the pump intensity of the CTC with a\nfrequency $\\omega_{\\mathrm{dr}}$ close to $2\\,\\omega_\\mathrm{CTC}$ leads to\nrobust locking of $\\omega_\\mathrm{CTC}$ to $\\omega_{\\mathrm{dr}}/2$, and hence\na DTC arises. This phase transition in a quantum many-body system is related to\nsubharmonic injection locking of non-linear mechanical and electronic\noscillators or lasers.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.12378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states, that are characterized by robust self-sustained oscillations, emerging via spontaneous breaking of discrete or continuous time translation symmetry. DTCs are periodically driven systems that oscillate with a subharmonic of the drive, while CTCs are driven continuously and oscillate with a system inherent frequency. Here, we explore a phase transition from a continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation frequency $\omega_\mathrm{CTC}$ is prepared in a continuously pumped atom-cavity system. Modulating the pump intensity of the CTC with a frequency $\omega_{\mathrm{dr}}$ close to $2\,\omega_\mathrm{CTC}$ leads to robust locking of $\omega_\mathrm{CTC}$ to $\omega_{\mathrm{dr}}/2$, and hence a DTC arises. This phase transition in a quantum many-body system is related to subharmonic injection locking of non-linear mechanical and electronic oscillators or lasers.
观察从连续晶体到离散晶体的相变
离散晶体(DTCs)和连续时间晶体(CTCs)是一种新型动态多体状态,其特点是通过自发打破离散或连续时间平移对称性而产生的稳健自持振荡。离散时间晶体是周期性驱动系统,以驱动的次谐波振荡,而连续时间晶体是连续驱动系统,以系统固有频率振荡。在这里,我们探讨了从连续时间晶体到离散时间晶体的相变。我们在一个连续泵浦的原子腔系统中制备了具有特征振荡频率 $\omega_\mathrm{CTC}$ 的 CTC。用接近于$2\\omega_{mathrm{CTC}$的频率$\omega_{mathrm{dr}$来调节CTC的泵浦强度会导致$\omega_{mathrm{CTC}$被锁定到$\omega_{mathrm{dr}$/2$,从而产生一个DTC。量子多体系统中的这种相变与非线性机械和电子振荡器或激光的次谐波注入锁定有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信