Generalized Red-Blue Circular Annulus Cover Problem

Sukanya Maji, Supantha Pandit, Sanjib Sadhu
{"title":"Generalized Red-Blue Circular Annulus Cover Problem","authors":"Sukanya Maji, Supantha Pandit, Sanjib Sadhu","doi":"arxiv-2402.13767","DOIUrl":null,"url":null,"abstract":"We study the Generalized Red-Blue Annulus Cover problem for two sets of\npoints, red ($R$) and blue ($B$), where each point $p \\in R\\cup B$ is\nassociated with a positive penalty ${\\cal P}(p)$. The red points have\nnon-covering penalties, and the blue points have covering penalties. The\nobjective is to compute a circular annulus ${\\cal A}$ such that the value of\nthe function ${\\cal P}({R}^{out})$ + ${\\cal P}({ B}^{in})$ is minimum, where\n${R}^{out} \\subseteq {R}$ is the set of red points not covered by ${\\cal A}$\nand ${B}^{in} \\subseteq {B}$ is the set of blue points covered by $\\cal A$. We\nalso study another version of this problem, where all the red points in $R$ and\nthe minimum number of points in $B$ are covered by the circular annulus in two\ndimensions. We design polynomial-time algorithms for all such circular annulus\nproblems.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.13767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Generalized Red-Blue Annulus Cover problem for two sets of points, red ($R$) and blue ($B$), where each point $p \in R\cup B$ is associated with a positive penalty ${\cal P}(p)$. The red points have non-covering penalties, and the blue points have covering penalties. The objective is to compute a circular annulus ${\cal A}$ such that the value of the function ${\cal P}({R}^{out})$ + ${\cal P}({ B}^{in})$ is minimum, where ${R}^{out} \subseteq {R}$ is the set of red points not covered by ${\cal A}$ and ${B}^{in} \subseteq {B}$ is the set of blue points covered by $\cal A$. We also study another version of this problem, where all the red points in $R$ and the minimum number of points in $B$ are covered by the circular annulus in two dimensions. We design polynomial-time algorithms for all such circular annulus problems.
广义红蓝圆环覆盖问题
我们研究了红色($R$)和蓝色($B$)两组点的广义红蓝环面覆盖问题,其中 R\cup B$ 中的每个点 $p 都与正惩罚 ${\cal P}(p)$ 相关联。红色点有非覆盖惩罚,蓝色点有覆盖惩罚。我们的目标是计算一个圆环 ${cal A}$,使得函数 ${cal P}({R}^{out})$+${cal P}({B}^{in})$的值最小,其中${R}^{out}是{R}^{out}的子集。\是没有被 ${cal A}$ 覆盖的红点集合,${B}^{in}是没有被 ${cal P}({R}^{out}} + ${cal P}({ B}^{in}}) $ 覆盖的红点集合。\是 ${cal A} 所覆盖的蓝色点的集合。我们还研究了这个问题的另一个版本,即 $R$ 中的所有红点和 $B$ 中的最少点都被二维圆环覆盖。我们为所有此类圆环问题设计了多项式时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信