Ordering Topological Descriptors

Brittany Terese Fasy, David L. Millman, Anna Schenfisch
{"title":"Ordering Topological Descriptors","authors":"Brittany Terese Fasy, David L. Millman, Anna Schenfisch","doi":"arxiv-2402.13632","DOIUrl":null,"url":null,"abstract":"Recent developments in shape reconstruction and comparison call for the use\nof many different types of topological descriptors (persistence diagrams, Euler\ncharacteristic functions, etc.). We establish a framework that allows for\nquantitative comparisons of topological descriptor types and therefore may be\nused as a tool in more rigorously justifying choices made in applications. We\nthen use this framework to partially order a set of six common topological\ndescriptor types. In particular, the resulting poset gives insight into the\nadvantages of using verbose rather than concise topological descriptors. We\nthen provide lower bounds on the size of sets of descriptors that are complete\ndiscrete invariants of simplicial complexes, both tight and worst case. This\nwork sets up a rigorous theory that allows for future comparisons and analysis\nof topological descriptor types.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.13632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in shape reconstruction and comparison call for the use of many different types of topological descriptors (persistence diagrams, Euler characteristic functions, etc.). We establish a framework that allows for quantitative comparisons of topological descriptor types and therefore may be used as a tool in more rigorously justifying choices made in applications. We then use this framework to partially order a set of six common topological descriptor types. In particular, the resulting poset gives insight into the advantages of using verbose rather than concise topological descriptors. We then provide lower bounds on the size of sets of descriptors that are complete discrete invariants of simplicial complexes, both tight and worst case. This work sets up a rigorous theory that allows for future comparisons and analysis of topological descriptor types.
拓扑描述符排序
形状重建和比较的最新发展要求使用多种不同类型的拓扑描述符(持久图、欧拉特征函数等)。我们建立了一个框架,可以对拓扑描述符类型进行定量比较,因此可以作为一种工具,更严格地证明应用中的选择是合理的。我们利用这一框架对六种常见拓扑描述符类型进行了部分排序。特别是,由此产生的正集让我们深入了解了使用冗长而非简洁的拓扑描述符的优势。Wethen 提供了描述符集大小的下限,这些描述符集完成了简单复合物的离散不变式,既有严格的,也有最坏的情况。这项工作建立了一个严格的理论,为今后比较和分析拓扑描述符类型提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信