An Allard-type boundary regularity theorem for $2d$ minimizing currents at smooth curves with arbitrary multiplicity

Camillo De Lellis, Stefano Nardulli, Simone Steinbrüchel
{"title":"An Allard-type boundary regularity theorem for $2d$ minimizing currents at smooth curves with arbitrary multiplicity","authors":"Camillo De Lellis, Stefano Nardulli, Simone Steinbrüchel","doi":"10.1007/s10240-024-00144-y","DOIUrl":null,"url":null,"abstract":"<p>We consider integral area-minimizing 2-dimensional currents <span>\\(T\\)</span> in <span>\\(U\\subset \\mathbf {R}^{2+n}\\)</span> with <span>\\(\\partial T = Q\\left [\\!\\![{\\Gamma }\\right ]\\!\\!]\\)</span>, where <span>\\(Q\\in \\mathbf {N} \\setminus \\{0\\}\\)</span> and <span>\\(\\Gamma \\)</span> is sufficiently smooth. We prove that, if <span>\\(q\\in \\Gamma \\)</span> is a point where the density of <span>\\(T\\)</span> is strictly below <span>\\(\\frac{Q+1}{2}\\)</span>, then the current is regular at <span>\\(q\\)</span>. The regularity is understood in the following sense: there is a neighborhood of <span>\\(q\\)</span> in which <span>\\(T\\)</span> consists of a finite number of regular minimal submanifolds meeting transversally at <span>\\(\\Gamma \\)</span> (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for <span>\\(Q=1\\)</span>. As a corollary, if <span>\\(\\Omega \\subset \\mathbf {R}^{2+n}\\)</span> is a bounded uniformly convex set and <span>\\(\\Gamma \\subset \\partial \\Omega \\)</span> a smooth 1-dimensional closed submanifold, then any area-minimizing current <span>\\(T\\)</span> with <span>\\(\\partial T = Q \\left [\\!\\![{\\Gamma }\\right ]\\!\\!]\\)</span> is regular in a neighborhood of <span>\\(\\Gamma \\)</span>.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00144-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider integral area-minimizing 2-dimensional currents \(T\) in \(U\subset \mathbf {R}^{2+n}\) with \(\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]\), where \(Q\in \mathbf {N} \setminus \{0\}\) and \(\Gamma \) is sufficiently smooth. We prove that, if \(q\in \Gamma \) is a point where the density of \(T\) is strictly below \(\frac{Q+1}{2}\), then the current is regular at \(q\). The regularity is understood in the following sense: there is a neighborhood of \(q\) in which \(T\) consists of a finite number of regular minimal submanifolds meeting transversally at \(\Gamma \) (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for \(Q=1\). As a corollary, if \(\Omega \subset \mathbf {R}^{2+n}\) is a bounded uniformly convex set and \(\Gamma \subset \partial \Omega \) a smooth 1-dimensional closed submanifold, then any area-minimizing current \(T\) with \(\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]\) is regular in a neighborhood of \(\Gamma \).

具有任意乘数的光滑曲线上 2d$ 最小电流的阿拉尔型边界正则定理
我们考虑在(U\subset \mathbf {R}^{2+n}\) with\(\partial T = Q\left [\!\),其中(Q(在mathbf {N}setminus (0))和(Gamma ())是足够平滑的。我们证明,如果 \(q\in \Gamma\) 是 \(T\) 的密度严格低于 \(\frac{Q+1}{2}\) 的点,那么电流在 \(q\) 是正则的。正则性可以从以下意义上理解:在 \(q\) 的邻域中,\(T\) 由有限个横向交会于 \(\Gamma \)的正则最小子曼形所组成(并以适当的整数倍率计算)。考虑到众所周知的例子,我们的结果是最优的,它是 Allard 对 \(Q=1\) 的经典定理的第一个非微不足道的概括。作为推论,如果(Omega子集mathbf {R}^{2+n}\) 是一个有界的均匀凸集,并且(Gamma子集partial \Omega \)是一个光滑的一维封闭子漫游,那么任何面积最小的电流(T)与(partial T = Q \left [\!\)在(\ω\)的邻域内是正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信