PARACONSISTENT AND PARACOMPLETE ZERMELO–FRAENKEL SET THEORY

YURII KHOMSKII, HRAFN VALTÝR ODDSSON
{"title":"PARACONSISTENT AND PARACOMPLETE ZERMELO–FRAENKEL SET THEORY","authors":"YURII KHOMSKII, HRAFN VALTÝR ODDSSON","doi":"10.1017/s1755020323000382","DOIUrl":null,"url":null,"abstract":"<p>We present a novel treatment of set theory in a four-valued <span>paraconsistent</span> and <span>paracomplete</span> logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to reason informally about incomplete and inconsistent phenomena, and is sufficiently similar to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222115540260-0904:S1755020323000382:S1755020323000382_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {ZFC}}$</span></span></img></span></span> to enable the development of interesting mathematics.</p><p>We propose an axiomatic system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222115540260-0904:S1755020323000382:S1755020323000382_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {BZFC}}$</span></span></img></span></span>, obtained by analysing the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222115540260-0904:S1755020323000382:S1755020323000382_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {ZFC}}$</span></span></img></span></span>-axioms and translating them to a four-valued setting in a careful manner, avoiding many of the obstacles encountered by other attempted formalizations. We introduce the <span>anti-classicality axiom</span> postulating the existence of non-classical sets, and prove a surprising results stating that the existence of a single non-classical set is sufficient to produce any other type of non-classical set.</p><p>Our theory is naturally bi-interpretable with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222115540260-0904:S1755020323000382:S1755020323000382_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {ZFC}}$</span></span></img></span></span>, and provides a philosophically satisfying view in which non-classical sets can be seen as a natural extension of classical ones, in a similar way to the non-well-founded sets of Peter Aczel [1].</p><p>Finally, we provide an interesting application concerning Tarski semantics, showing that the classical definition of the satisfaction relation yields a logic precisely reflecting the non-classicality in the meta-theory.</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"219 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1755020323000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to reason informally about incomplete and inconsistent phenomena, and is sufficiently similar to Abstract Image${\mathrm {ZFC}}$ to enable the development of interesting mathematics.

We propose an axiomatic system Abstract Image${\mathrm {BZFC}}$, obtained by analysing the Abstract Image${\mathrm {ZFC}}$-axioms and translating them to a four-valued setting in a careful manner, avoiding many of the obstacles encountered by other attempted formalizations. We introduce the anti-classicality axiom postulating the existence of non-classical sets, and prove a surprising results stating that the existence of a single non-classical set is sufficient to produce any other type of non-classical set.

Our theory is naturally bi-interpretable with Abstract Image${\mathrm {ZFC}}$, and provides a philosophically satisfying view in which non-classical sets can be seen as a natural extension of classical ones, in a similar way to the non-well-founded sets of Peter Aczel [1].

Finally, we provide an interesting application concerning Tarski semantics, showing that the classical definition of the satisfaction relation yields a logic precisely reflecting the non-classicality in the meta-theory.

准一致和准完全泽梅洛-弗兰克尔集合论
我们提出了一种在四值准一致和准完备逻辑中处理集合论的新方法,即命题既可以为真也可以为假,既可以非真也可以非假的逻辑。我们的研究方法与以往的准一致集合论研究大相径庭,以往的研究几乎都是为了避免罗素悖论和实现天真的理解。相反,我们优先考虑建立一个具有清晰的非经典集合本体的系统,它可以用来对不完整和不一致的现象进行非正式推理,并且与 ${mathrm {ZFC}}$ 足够相似,从而能够发展出有趣的数学。我们提出了一个公理系统 ${mathrm {BZFC}}$ ,它是通过分析 ${mathrm {ZFC}}$ 的公理,并以一种谨慎的方式将其转换为四值环境而得到的,避免了许多其他形式化尝试所遇到的障碍。我们引入了反经典性公理,假设非经典集合的存在,并证明了一个惊人的结果,即单个非经典集合的存在足以产生任何其他类型的非经典集合。我们的理论与 ${mathrm {ZFC}}$ 具有天然的双向可解释性,并提供了一种哲学上令人满意的观点,即非经典集合可以被视为经典集合的自然延伸,这与彼得-阿克泽尔(Peter Aczel)的非有根据集合[1]有异曲同工之妙。最后,我们提供了一个关于塔尔斯基语义学的有趣应用,证明了满足关系的经典定义产生了一种逻辑,恰好反映了元理论中的非经典性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信