{"title":"A Path-Based Approach to Constrained Sparse Optimization","authors":"Nadav Hallak","doi":"10.1137/22m1535498","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 790-816, March 2024. <br/> Abstract. This paper proposes a path-based approach for the minimization of a continuously differentiable function over sparse symmetric sets, which is a hard problem that exhibits a restrictiveness-hierarchy of necessary optimality conditions. To achieve the more restrictive conditions in the hierarchy, state-of-the-art algorithms require a support optimization oracle that must exactly solve the problem in smaller dimensions. The path-based approach developed in this study produces a path-based optimality condition, which is placed well in the restrictiveness-hierarchy, and a method to achieve it that does not require a support optimization oracle and, moreover, is projection-free. In the development process, new results are derived for the regularized linear minimization problem over sparse symmetric sets, which give additional means to identify optimal solutions for convex and concave objective functions. We complement our results with numerical examples.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1535498","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 1, Page 790-816, March 2024. Abstract. This paper proposes a path-based approach for the minimization of a continuously differentiable function over sparse symmetric sets, which is a hard problem that exhibits a restrictiveness-hierarchy of necessary optimality conditions. To achieve the more restrictive conditions in the hierarchy, state-of-the-art algorithms require a support optimization oracle that must exactly solve the problem in smaller dimensions. The path-based approach developed in this study produces a path-based optimality condition, which is placed well in the restrictiveness-hierarchy, and a method to achieve it that does not require a support optimization oracle and, moreover, is projection-free. In the development process, new results are derived for the regularized linear minimization problem over sparse symmetric sets, which give additional means to identify optimal solutions for convex and concave objective functions. We complement our results with numerical examples.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.