Wuqi Li, Shitong Mao, Amanda S. Mahoney, James L. Coyle, Ervin Sejdić
{"title":"Automatic Tracking of Hyoid Bone Displacement and Rotation Relative to Cervical Vertebrae in Videofluoroscopic Swallow Studies Using Deep Learning","authors":"Wuqi Li, Shitong Mao, Amanda S. Mahoney, James L. Coyle, Ervin Sejdić","doi":"10.1007/s10278-024-01039-4","DOIUrl":null,"url":null,"abstract":"<p>The hyoid bone displacement and rotation are critical kinematic events of the swallowing process in the assessment of videofluoroscopic swallow studies (VFSS). However, the quantitative analysis of such events requires frame-by-frame manual annotation, which is labor-intensive and time-consuming. Our work aims to develop a method of automatically tracking hyoid bone displacement and rotation in VFSS. We proposed a full high-resolution network, a deep learning architecture, to detect the anterior and posterior of the hyoid bone to identify its location and rotation. Meanwhile, the anterior-inferior corners of the C2 and C4 vertebrae were detected simultaneously to automatically establish a new coordinate system and eliminate the effect of posture change. The proposed model was developed by 59,468 VFSS frames collected from 1488 swallowing samples, and it achieved an average landmark localization error of 2.38 pixels (around 0.5% of the image with 448 × 448 pixels) and an average angle prediction error of 0.065 radians in predicting C2–C4 and hyoid bone angles. In addition, the displacement of the hyoid bone center was automatically tracked on a frame-by-frame analysis, achieving an average mean absolute error of 2.22 pixels and 2.78 pixels in the <i>x</i>-axis and <i>y</i>-axis, respectively. The results of this study support the effectiveness and accuracy of the proposed method in detecting hyoid bone displacement and rotation. Our study provided an automatic method of analyzing hyoid bone kinematics during VFSS, which could contribute to early diagnosis and effective disease management.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01039-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The hyoid bone displacement and rotation are critical kinematic events of the swallowing process in the assessment of videofluoroscopic swallow studies (VFSS). However, the quantitative analysis of such events requires frame-by-frame manual annotation, which is labor-intensive and time-consuming. Our work aims to develop a method of automatically tracking hyoid bone displacement and rotation in VFSS. We proposed a full high-resolution network, a deep learning architecture, to detect the anterior and posterior of the hyoid bone to identify its location and rotation. Meanwhile, the anterior-inferior corners of the C2 and C4 vertebrae were detected simultaneously to automatically establish a new coordinate system and eliminate the effect of posture change. The proposed model was developed by 59,468 VFSS frames collected from 1488 swallowing samples, and it achieved an average landmark localization error of 2.38 pixels (around 0.5% of the image with 448 × 448 pixels) and an average angle prediction error of 0.065 radians in predicting C2–C4 and hyoid bone angles. In addition, the displacement of the hyoid bone center was automatically tracked on a frame-by-frame analysis, achieving an average mean absolute error of 2.22 pixels and 2.78 pixels in the x-axis and y-axis, respectively. The results of this study support the effectiveness and accuracy of the proposed method in detecting hyoid bone displacement and rotation. Our study provided an automatic method of analyzing hyoid bone kinematics during VFSS, which could contribute to early diagnosis and effective disease management.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.