Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in $$\mathbb {R}^N$$

Shengbing Deng, Xingliang Tian, Sihui Xiong
{"title":"Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in $$\\mathbb {R}^N$$","authors":"Shengbing Deng, Xingliang Tian, Sihui Xiong","doi":"10.1007/s00030-023-00916-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following Choquard equation </p><span>$$\\begin{aligned} -\\varepsilon ^{N}\\Delta _{N}u+V(x)|u|^{N-2}u=\\varepsilon ^{\\mu -N}\\left( I_\\mu *F(u)\\right) f(u) \\quad {\\text{ in }\\quad \\mathbb {R}^N}, \\end{aligned}$$</span><p>where <span>\\(N\\ge 3\\)</span>, <span>\\(I_\\mu =|x|^{-\\mu }\\)</span> with <span>\\(0&lt;\\mu &lt;N\\)</span>, <span>\\(\\Delta _{N}u=\\textrm{div}(|\\nabla u|^{N-2}\\nabla u)\\)</span> denotes the <i>N</i>-Laplacian operator, <i>V</i>(<i>x</i>) is a continuous real function on <span>\\(\\mathbb {R}^N\\)</span>, <i>F</i>(<i>s</i>) is the primitive of <i>f</i>(<i>s</i>) and <span>\\(\\varepsilon \\)</span> is a positive parameter. Assuming that the nonlinearity <i>f</i>(<i>s</i>) has critical exponential growth in the sense of Trudinger–Moser inequality, we establish the existence, multiplicity and concentration of solutions by variational methods and Ljusternik–Schnirelmann theory, which extends the works of Alves and Figueiredo (J Differ Equ 246:1288–1311, 2009) to the problem with Choquard nonlinearity, Alves et al. (J Differ Equ 261:1933–1972, 2016) to higher dimension.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00916-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following Choquard equation

$$\begin{aligned} -\varepsilon ^{N}\Delta _{N}u+V(x)|u|^{N-2}u=\varepsilon ^{\mu -N}\left( I_\mu *F(u)\right) f(u) \quad {\text{ in }\quad \mathbb {R}^N}, \end{aligned}$$

where \(N\ge 3\), \(I_\mu =|x|^{-\mu }\) with \(0<\mu <N\), \(\Delta _{N}u=\textrm{div}(|\nabla u|^{N-2}\nabla u)\) denotes the N-Laplacian operator, V(x) is a continuous real function on \(\mathbb {R}^N\), F(s) is the primitive of f(s) and \(\varepsilon \) is a positive parameter. Assuming that the nonlinearity f(s) has critical exponential growth in the sense of Trudinger–Moser inequality, we establish the existence, multiplicity and concentration of solutions by variational methods and Ljusternik–Schnirelmann theory, which extends the works of Alves and Figueiredo (J Differ Equ 246:1288–1311, 2009) to the problem with Choquard nonlinearity, Alves et al. (J Differ Equ 261:1933–1972, 2016) to higher dimension.

在 $$\mathbb {R}^N$ 中具有临界指数增长的 Choquard 方程的解的多重性和浓度
在本文中,我们考虑下面的乔夸德方程 $$\begin{aligned} -\varepsilon ^{N}\Delta _{N}u+V(x)|u|^{N-2}u=\varepsilon ^{\mu -N}\left( I_\mu *F(u)\right) f(u) \quad {\text{ in }ad \mathbb {R}^N}、\end{aligned}$where \(N\ge 3\),\(I_\mu =|x|^{-\mu }\) with \(0<;\)表示N-拉普拉斯算子,V(x)是(\mathbb {R}^N\)上的连续实函数,F(s)是f(s)的基元,(\varepsilon \)是一个正参数。假设非线性 f(s) 具有特鲁丁格-莫泽不等式意义上的临界指数增长,我们通过变分法和 Ljusternik-Schnirelmann 理论建立了解的存在性、多重性和集中性,这将 Alves 和 Figueiredo (J Differ Equ 246:1288-1311, 2009) 的工作扩展到了具有 Choquard 非线性的问题,Alves 等人 (J Differ Equ 261:1933-1972, 2016) 的工作扩展到了更高维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信