Stable critical point of the Robin function and bubbling phenomenon for a slightly subcritical elliptic problem

Habib Fourti, Rabeh Ghoudi
{"title":"Stable critical point of the Robin function and bubbling phenomenon for a slightly subcritical elliptic problem","authors":"Habib Fourti, Rabeh Ghoudi","doi":"10.1007/s00030-024-00921-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we deal with the boundary value problem <span>\\(-\\Delta u= |u|^{4/(n-2)}u/[\\ln (e+|u|)]^\\varepsilon \\)</span> in a bounded smooth domain <span>\\( \\Omega \\)</span> in <span>\\({\\mathbb {R}}^n\\)</span>, <span>\\(n\\ge 3\\)</span> with homogenous Dirichlet boundary condition. Here <span>\\(\\varepsilon &gt;0\\)</span>. Clapp et al. (J Differ Equ 275:418–446, 2021) built a family of solution blowing up if <span>\\(n\\ge 4\\)</span> and <span>\\(\\varepsilon \\)</span> small enough. They conjectured in their paper the existence of sign changing solutions which blow up and blow down at the same point. Here we give a confirmative answer by proving that our slightly subcritical problem has a solution with the shape of sign changing bubbles concentrating on a stable critical point of the Robin function for <span>\\(\\varepsilon \\)</span> sufficiently small.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00921-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the boundary value problem \(-\Delta u= |u|^{4/(n-2)}u/[\ln (e+|u|)]^\varepsilon \) in a bounded smooth domain \( \Omega \) in \({\mathbb {R}}^n\), \(n\ge 3\) with homogenous Dirichlet boundary condition. Here \(\varepsilon >0\). Clapp et al. (J Differ Equ 275:418–446, 2021) built a family of solution blowing up if \(n\ge 4\) and \(\varepsilon \) small enough. They conjectured in their paper the existence of sign changing solutions which blow up and blow down at the same point. Here we give a confirmative answer by proving that our slightly subcritical problem has a solution with the shape of sign changing bubbles concentrating on a stable critical point of the Robin function for \(\varepsilon \) sufficiently small.

略亚临界椭圆问题的罗宾函数稳定临界点和冒泡现象
在本文中,我们处理的边界值问题是:(-\Delta u= |u|^{4/(n-2)}u/[\ln (e+|u|)]^\varepsilon \) in \({\mathbb {R}}^n\), \(n\ge 3\) with homogenous Dirichlet boundary condition的有界光滑域\( \Omega \) 中的(-\Delta u= |u|^{4/(n-2)}u/[\ln (e+|u|)]^\varepsilon \)。这里是 \(\varepsilon >0\).Clapp 等人(J Differ Equ 275:418-446,2021)建立了一个如果 \(n\ge 4\) 和 \(\varepsilon \)足够小就会炸开的解家族。他们在论文中猜想存在符号变化解,这些解在同一点炸开和炸坏。在这里,我们通过证明我们的轻微次临界问题有一个解,其符号变化气泡的形状集中在 \(\varepsilon \) 足够小的罗宾函数的一个稳定临界点上,给出了一个确认的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信