On the interaction between the search parameters and the nature of the search problems in search-based model-driven engineering

Isis Roca, Jaime Font, Lorena Arcega, Carlos Cetina
{"title":"On the interaction between the search parameters and the nature of the search problems in search-based model-driven engineering","authors":"Isis Roca, Jaime Font, Lorena Arcega, Carlos Cetina","doi":"10.1002/spe.3320","DOIUrl":null,"url":null,"abstract":"The use of search-based software engineering to address model-driven engineering activities (SBMDE) is becoming more popular. Many maintenance tasks can be reformulated as a search problem, and, when those tasks are applied to software models, the search strategy has to retrieve a model fragment. There are no studies on the influence of the search parameters when applied to software models. This article evaluates the impact of different search parameter values on the performance of an evolutionary algorithm whose population is in the form of software models. Our study takes into account the nature of the model fragment location problems (MFLPs) in which the evolutionary algorithm is applied. The evaluation searches 1895 MFLPs (characterized through five measures that define MFLPs) from two industrial case studies and uses 625 different combinations of search parameter values. The results show that the impact on the performance when varying the population size, the replacement percentage, or the crossover rate produces changes of around 30% in performance. With regard to the nature of the problems, the size of the search space has the largest impact. Search parameter values and the nature of the MFLPs influence the performance when applying an evolutionary algorithm to perform fragment location on models. Search parameter values have a greater effect on precision values, and the nature of the MFLPs has a greater effect on recall values. Our results should raise awareness of the relevance of the search parameters and the nature of the problems for the SBMDE community.","PeriodicalId":21899,"journal":{"name":"Software: Practice and Experience","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spe.3320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of search-based software engineering to address model-driven engineering activities (SBMDE) is becoming more popular. Many maintenance tasks can be reformulated as a search problem, and, when those tasks are applied to software models, the search strategy has to retrieve a model fragment. There are no studies on the influence of the search parameters when applied to software models. This article evaluates the impact of different search parameter values on the performance of an evolutionary algorithm whose population is in the form of software models. Our study takes into account the nature of the model fragment location problems (MFLPs) in which the evolutionary algorithm is applied. The evaluation searches 1895 MFLPs (characterized through five measures that define MFLPs) from two industrial case studies and uses 625 different combinations of search parameter values. The results show that the impact on the performance when varying the population size, the replacement percentage, or the crossover rate produces changes of around 30% in performance. With regard to the nature of the problems, the size of the search space has the largest impact. Search parameter values and the nature of the MFLPs influence the performance when applying an evolutionary algorithm to perform fragment location on models. Search parameter values have a greater effect on precision values, and the nature of the MFLPs has a greater effect on recall values. Our results should raise awareness of the relevance of the search parameters and the nature of the problems for the SBMDE community.
基于搜索的模型驱动工程中搜索参数与搜索问题性质之间的相互作用
使用基于搜索的软件工程来解决模型驱动的工程活动(SBMDE)正变得越来越流行。许多维护任务都可以重新表述为搜索问题,当这些任务应用于软件模型时,搜索策略必须检索模型片段。目前还没有关于搜索参数对软件模型的影响的研究。本文评估了不同搜索参数值对以软件模型为种群的进化算法性能的影响。我们的研究考虑了应用进化算法的模型片段定位问题(MFLPs)的性质。评估搜索了两个工业案例研究中的 1895 个 MFLPs(通过定义 MFLPs 的五种措施来描述),并使用了 625 种不同的搜索参数值组合。结果表明,改变种群规模、替换率或交叉率对性能的影响约为 30%。就问题的性质而言,搜索空间的大小影响最大。应用进化算法对模型进行片段定位时,搜索参数值和 MFLPs 的性质会影响性能。搜索参数值对精确度值的影响更大,而MFLPs的性质对召回值的影响更大。我们的研究结果应能提高 SBMDE 界对搜索参数和问题性质相关性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信