Degeneration phenomenon in linear ordinary differential equations

IF 0.8 4区 数学 Q2 MATHEMATICS
Vakhtang Lomadze
{"title":"Degeneration phenomenon in linear ordinary differential equations","authors":"Vakhtang Lomadze","doi":"10.1515/gmj-2024-2007","DOIUrl":null,"url":null,"abstract":"Given a linear constant coefficient ODE depending on a parameter, when this parameter approaches zero, the solution set converges to the solution set of the limit differential equation if the leading coefficient does not vanish. The situation is very subtle in the singular case, i.e., in the case when this coefficient becomes zero. The solution set then may even collapse completely. In this note, a formalism is developed in which the solution set of a linear constant coefficient ODE always depends continuously on the equation coefficients.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a linear constant coefficient ODE depending on a parameter, when this parameter approaches zero, the solution set converges to the solution set of the limit differential equation if the leading coefficient does not vanish. The situation is very subtle in the singular case, i.e., in the case when this coefficient becomes zero. The solution set then may even collapse completely. In this note, a formalism is developed in which the solution set of a linear constant coefficient ODE always depends continuously on the equation coefficients.
线性常微分方程中的退化现象
给定一个取决于参数的线性常系数 ODE,当该参数趋近于零时,如果前导系数不消失,解集就会收敛到极限微分方程的解集。在奇异情况下,即该系数变为零时,情况就非常微妙了。解集甚至可能完全崩溃。本论文提出了一种形式主义,即线性常系数 ODE 的解集总是连续地依赖于方程系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信