A generalization of Hardy’s inequality to infinite tensors

IF 0.8 4区 数学 Q2 MATHEMATICS
Morteza Saheli, Davoud Foroutannia, Sara Yusefian
{"title":"A generalization of Hardy’s inequality to infinite tensors","authors":"Morteza Saheli, Davoud Foroutannia, Sara Yusefian","doi":"10.1515/gmj-2024-2006","DOIUrl":null,"url":null,"abstract":"In this paper, we extend Hardy’s inequality to infinite tensors. To do so, we introduce Cesàro tensors <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℭ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0150.png\" /> <jats:tex-math>{\\mathfrak{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and consider them as tensor maps from sequence spaces into tensor spaces. In fact, we prove inequalities of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:mi>ℭ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>x</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msub> <m:mi>l</m:mi> <m:mi>p</m:mi> </m:msub> <m:mi>k</m:mi> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0106.png\" /> <jats:tex-math>\\|\\mathfrak{C}x^{k}\\|_{t,1}\\leq U\\|x\\|_{l_{p}}^{k}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0107.png\" /> <jats:tex-math>k=1,2</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:italic>x</jats:italic> is a sequence, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℭ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0149.png\" /> <jats:tex-math>{\\mathfrak{C}x^{k}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tensor, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:msub> <m:mo>∥</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0155.png\" /> <jats:tex-math>{\\|\\cdot\\|_{t,1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:msub> <m:mo>∥</m:mo> <m:msub> <m:mi>l</m:mi> <m:mi>p</m:mi> </m:msub> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0153.png\" /> <jats:tex-math>{\\|\\cdot\\|_{l_{p}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the tensor and sequence norms, respectively. The constant <jats:italic>U</jats:italic> is independent of <jats:italic>x</jats:italic>, and we seek the smallest possible value of <jats:italic>U</jats:italic>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"81 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend Hardy’s inequality to infinite tensors. To do so, we introduce Cesàro tensors {\mathfrak{C}} , and consider them as tensor maps from sequence spaces into tensor spaces. In fact, we prove inequalities of the form x k t , 1 U x l p k \|\mathfrak{C}x^{k}\|_{t,1}\leq U\|x\|_{l_{p}}^{k} ( k = 1 , 2 k=1,2 ), where x is a sequence, x k {\mathfrak{C}x^{k}} is a tensor, and t , 1 {\|\cdot\|_{t,1}} , l p {\|\cdot\|_{l_{p}}} are the tensor and sequence norms, respectively. The constant U is independent of x, and we seek the smallest possible value of U.
哈代不等式对无限张量的推广
在本文中,我们将哈代不等式扩展到无限张量。为此,我们引入 Cesàro 张量 ℭ {\mathfrak{C}} ,并将其视为从序列空间到张量空间的张量映射。 ,并将它们视为从序列空间到张量空间的张量映射。事实上,我们证明了形式为 ∥ ℭ x k ∥ t , 1 ≤ U ∥ x ∥ l p k\|\mathfrak{C}x^{k}\|_{t,1}\leq U\|x\|_{l_{p}}^{k} 的不等式。 ( k = 1 , 2 k=1,2 ), 其中 x 是一个序列,ℭ x k {\mathfrak{C}x^{k}} 是一个张量,并且 ∥ ⋅ ∥ t , 1 {\|\cdot\|_{t,1}} , ∥ ⋅ ∥ l p {\|\cdot\|_{l_{p}}} 分别是张量规范和序列规范。常数 U 与 x 无关,我们寻求 U 的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信