A generalization of Hardy’s inequality to infinite tensors

Pub Date : 2024-02-20 DOI:10.1515/gmj-2024-2006
Morteza Saheli, Davoud Foroutannia, Sara Yusefian
{"title":"A generalization of Hardy’s inequality to infinite tensors","authors":"Morteza Saheli, Davoud Foroutannia, Sara Yusefian","doi":"10.1515/gmj-2024-2006","DOIUrl":null,"url":null,"abstract":"In this paper, we extend Hardy’s inequality to infinite tensors. To do so, we introduce Cesàro tensors <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℭ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0150.png\" /> <jats:tex-math>{\\mathfrak{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and consider them as tensor maps from sequence spaces into tensor spaces. In fact, we prove inequalities of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:mi>ℭ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>x</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msub> <m:mi>l</m:mi> <m:mi>p</m:mi> </m:msub> <m:mi>k</m:mi> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0106.png\" /> <jats:tex-math>\\|\\mathfrak{C}x^{k}\\|_{t,1}\\leq U\\|x\\|_{l_{p}}^{k}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0107.png\" /> <jats:tex-math>k=1,2</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:italic>x</jats:italic> is a sequence, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℭ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0149.png\" /> <jats:tex-math>{\\mathfrak{C}x^{k}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tensor, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:msub> <m:mo>∥</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0155.png\" /> <jats:tex-math>{\\|\\cdot\\|_{t,1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∥</m:mo> <m:mo>⋅</m:mo> <m:msub> <m:mo>∥</m:mo> <m:msub> <m:mi>l</m:mi> <m:mi>p</m:mi> </m:msub> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2006_eq_0153.png\" /> <jats:tex-math>{\\|\\cdot\\|_{l_{p}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the tensor and sequence norms, respectively. The constant <jats:italic>U</jats:italic> is independent of <jats:italic>x</jats:italic>, and we seek the smallest possible value of <jats:italic>U</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend Hardy’s inequality to infinite tensors. To do so, we introduce Cesàro tensors {\mathfrak{C}} , and consider them as tensor maps from sequence spaces into tensor spaces. In fact, we prove inequalities of the form x k t , 1 U x l p k \|\mathfrak{C}x^{k}\|_{t,1}\leq U\|x\|_{l_{p}}^{k} ( k = 1 , 2 k=1,2 ), where x is a sequence, x k {\mathfrak{C}x^{k}} is a tensor, and t , 1 {\|\cdot\|_{t,1}} , l p {\|\cdot\|_{l_{p}}} are the tensor and sequence norms, respectively. The constant U is independent of x, and we seek the smallest possible value of U.
分享
查看原文
哈代不等式对无限张量的推广
在本文中,我们将哈代不等式扩展到无限张量。为此,我们引入 Cesàro 张量 ℭ {\mathfrak{C}} ,并将其视为从序列空间到张量空间的张量映射。 ,并将它们视为从序列空间到张量空间的张量映射。事实上,我们证明了形式为 ∥ ℭ x k ∥ t , 1 ≤ U ∥ x ∥ l p k\|\mathfrak{C}x^{k}\|_{t,1}\leq U\|x\|_{l_{p}}^{k} 的不等式。 ( k = 1 , 2 k=1,2 ), 其中 x 是一个序列,ℭ x k {\mathfrak{C}x^{k}} 是一个张量,并且 ∥ ⋅ ∥ t , 1 {\|\cdot\|_{t,1}} , ∥ ⋅ ∥ l p {\|\cdot\|_{l_{p}}} 分别是张量规范和序列规范。常数 U 与 x 无关,我们寻求 U 的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信