{"title":"Analytic solution to functional differential equations via Bell’s polynomials","authors":"Diego Caratelli, Pierpaolo Natalini, Paolo Emilio Ricci","doi":"10.1515/gmj-2024-2005","DOIUrl":null,"url":null,"abstract":"It is shown how to approximate the solution of functional differential equations in terms of Bell’s polynomials. Some numerical checks are shown, by using the computer algebra system Mathematica<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi /> <m:mi mathvariant=\"normal\">©</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2005_eq_0181.png\" /> <jats:tex-math>{{}^{\\copyright}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
通过贝尔多项式解析函数微分方程
它展示了如何用贝尔多项式近似求函数微分方程的解。通过使用计算机代数系统 Mathematica © {{}^{copyright} 进行一些数值检验。} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。