Andreas Eibeck , Shaocong Zhang , Mei Qi Lim , Markus Kraft
{"title":"A simple and efficient approach to unsupervised instance matching and its application to linked data of power plants","authors":"Andreas Eibeck , Shaocong Zhang , Mei Qi Lim , Markus Kraft","doi":"10.1016/j.websem.2024.100815","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge graphs store and link semantically annotated data about real-world entities from a variety of domains and on a large scale. The World Avatar is based on a dynamic decentralised knowledge graph and on semantic technologies to realise complex cross-domain scenarios. Accurate computational results for such scenarios require the availability of complete, high-quality data. This work focuses on instance matching — one of the subtasks of automatically populating the knowledge graph with data from a wide spectrum of external sources. Instance matching compares two data sets and seeks to identify instances (data, records) referring to the same real-world entity. We introduce AutoCal, a new instance matcher which does not require labelled data and runs out of the box for a wide range of domains without tuning method-specific parameters. AutoCal achieves results competitive to recently proposed unsupervised matchers from the field of Machine Learning. We also select an unsupervised state-of-the-art matcher from the field of Deep Learning for a thorough comparison. Our results show that neither AutoCal nor the state-of-the-art matcher is superior regarding matching quality while AutoCal has only moderate hardware requirements and runs 2.7 to 60 times faster. In summary, AutoCal is specifically well-suited to be used in an automated environment. We present its prototypical integration into the World Avatar and apply AutoCal to the domain of power plants which is relevant for practical environmental scenarios of the World Avatar.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"80 ","pages":"Article 100815"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570826824000015/pdfft?md5=3ea0d1c12ee82e1292dd9975673bdbcc&pid=1-s2.0-S1570826824000015-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge graphs store and link semantically annotated data about real-world entities from a variety of domains and on a large scale. The World Avatar is based on a dynamic decentralised knowledge graph and on semantic technologies to realise complex cross-domain scenarios. Accurate computational results for such scenarios require the availability of complete, high-quality data. This work focuses on instance matching — one of the subtasks of automatically populating the knowledge graph with data from a wide spectrum of external sources. Instance matching compares two data sets and seeks to identify instances (data, records) referring to the same real-world entity. We introduce AutoCal, a new instance matcher which does not require labelled data and runs out of the box for a wide range of domains without tuning method-specific parameters. AutoCal achieves results competitive to recently proposed unsupervised matchers from the field of Machine Learning. We also select an unsupervised state-of-the-art matcher from the field of Deep Learning for a thorough comparison. Our results show that neither AutoCal nor the state-of-the-art matcher is superior regarding matching quality while AutoCal has only moderate hardware requirements and runs 2.7 to 60 times faster. In summary, AutoCal is specifically well-suited to be used in an automated environment. We present its prototypical integration into the World Avatar and apply AutoCal to the domain of power plants which is relevant for practical environmental scenarios of the World Avatar.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.