Tracial oscillation zero and stable rank one

Xuanlong Fu, Huaxin Lin
{"title":"Tracial oscillation zero and stable rank one","authors":"Xuanlong Fu, Huaxin Lin","doi":"10.4153/s0008414x24000099","DOIUrl":null,"url":null,"abstract":"<p>Let <span>A</span> be a separable (not necessarily unital) simple <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C^*$</span></span></img></span></span>-algebra with strict comparison. We show that if <span>A</span> has tracial approximate oscillation zero, then <span>A</span> has stable rank one and the canonical map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span> from the Cuntz semigroup of <span>A</span> to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$C^*$</span></span></img></span></span>-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span> is surjective.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a separable (not necessarily unital) simple Abstract Image$C^*$-algebra with strict comparison. We show that if A has tracial approximate oscillation zero, then A has stable rank one and the canonical map Abstract Image$\Gamma $ from the Cuntz semigroup of A to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple Abstract Image$C^*$-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map Abstract Image$\Gamma $ is surjective.

零级三角振荡和一级稳定振荡
让 A 是一个具有严格比较的可分离(不一定是独占)简单 $C^*$ 代数。我们证明,如果 A 具有三面近似振荡零,那么 A 具有稳定秩一,并且从 A 的 Cuntz 半群到相应的下半连续仿射函数空间的规范映射 $\Gamma $ 是可射的。反之亦然。作为一个副产品,我们发现一个可分离的简单$C^*$-代数,只要它有严格的比较性,并且规范映射$\Gamma $是弹射的,那么它几乎有稳定的秩一,就一定有稳定的秩一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信