{"title":"Tracial oscillation zero and stable rank one","authors":"Xuanlong Fu, Huaxin Lin","doi":"10.4153/s0008414x24000099","DOIUrl":null,"url":null,"abstract":"<p>Let <span>A</span> be a separable (not necessarily unital) simple <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C^*$</span></span></img></span></span>-algebra with strict comparison. We show that if <span>A</span> has tracial approximate oscillation zero, then <span>A</span> has stable rank one and the canonical map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span> from the Cuntz semigroup of <span>A</span> to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$C^*$</span></span></img></span></span>-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221010039813-0084:S0008414X24000099:S0008414X24000099_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span> is surjective.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let A be a separable (not necessarily unital) simple $C^*$-algebra with strict comparison. We show that if A has tracial approximate oscillation zero, then A has stable rank one and the canonical map $\Gamma $ from the Cuntz semigroup of A to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple $C^*$-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map $\Gamma $ is surjective.
让 A 是一个具有严格比较的可分离(不一定是独占)简单 $C^*$ 代数。我们证明,如果 A 具有三面近似振荡零,那么 A 具有稳定秩一,并且从 A 的 Cuntz 半群到相应的下半连续仿射函数空间的规范映射 $\Gamma $ 是可射的。反之亦然。作为一个副产品,我们发现一个可分离的简单$C^*$-代数,只要它有严格的比较性,并且规范映射$\Gamma $是弹射的,那么它几乎有稳定的秩一,就一定有稳定的秩一。