{"title":"On the friable mean-value of the Erdős–Hooley Delta function","authors":"B. Martin , G. Tenenbaum , J. Wetzer","doi":"10.1016/j.indag.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>For integer <span><math><mi>n</mi></math></span> and real <span><math><mi>u</mi></math></span>, define <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>|</mo><mrow><mo>{</mo><mi>d</mi><mo>:</mo><mi>d</mi><mo>∣</mo><mi>n</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo><</mo><mi>d</mi><mo>⩽</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>}</mo></mrow><mo>|</mo></mrow></mrow></math></span>. Then, the Erdős–Hooley Delta function is defined as <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>u</mi><mo>∈</mo><mi>R</mi></mrow></msub><mi>Δ</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> We provide uniform upper and lower bounds for the mean-value of <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> over friable integers, i.e. integers free of large prime factors.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000090/pdfft?md5=d2a0f3d37cb93941f7d1335c246fb3a7&pid=1-s2.0-S0019357724000090-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For integer and real , define . Then, the Erdős–Hooley Delta function is defined as We provide uniform upper and lower bounds for the mean-value of over friable integers, i.e. integers free of large prime factors.