Virtual Element Methods Without Extrinsic Stabilization

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Chunyu Chen, Xuehai Huang, Huayi Wei
{"title":"Virtual Element Methods Without Extrinsic Stabilization","authors":"Chunyu Chen, Xuehai Huang, Huayi Wei","doi":"10.1137/22m1504196","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 567-591, February 2024. <br/> Abstract. Virtual element methods (VEMs) without extrinsic stabilization in an arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local [math]-conforming macro finite element spaces such that the associated [math] projection of the gradient of virtual element functions is computable, and the [math] projector has a uniform lower bound on the gradient of virtual element function spaces in the [math] norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1504196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 567-591, February 2024.
Abstract. Virtual element methods (VEMs) without extrinsic stabilization in an arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local [math]-conforming macro finite element spaces such that the associated [math] projection of the gradient of virtual element functions is computable, and the [math] projector has a uniform lower bound on the gradient of virtual element function spaces in the [math] norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.
无外在稳定的虚拟元素方法
SIAM 数值分析期刊》第 62 卷第 1 期第 567-591 页,2024 年 2 月。 摘要。针对二阶椭圆问题开发了任意多项式度下无外在稳定的虚元方法(VEM),包括任意维度下的非顺应虚元方法和顺应虚元方法。关键在于构造局部[math]符合宏有限元空间,使得虚拟元素函数梯度的相关[math]投影是可计算的,并且[math]投影在[math]规范中对虚拟元素函数空间的梯度具有均匀下界。推导出了这些虚元函数的最佳误差估计值。还提供了数值实验来测试无外在稳定的 VEM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信