Augmentations, Fillings, and Clusters

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Honghao Gao, Linhui Shen, Daping Weng
{"title":"Augmentations, Fillings, and Clusters","authors":"Honghao Gao, Linhui Shen, Daping Weng","doi":"10.1007/s00039-024-00673-y","DOIUrl":null,"url":null,"abstract":"<p>We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster K<sub>2</sub> (aka. <span>\\(\\mathcal{A}\\)</span>-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00673-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster K2 (aka. \(\mathcal{A}\)-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.

Abstract Image

增量、填充和集群
我们通过弗洛尔理论的方法研究了正辫状线的 Legendrian 链接,并证明了它们的增量品种是簇 K2(又名\(\mathcal{A}\)-)品种。利用埃克霍尔姆等人 (J. Eur. Math.) 的 Legendrian 链接的精确拉格朗日协整 (Lagrangian cobordisms)Math.18(11):2627-2689,2016),我们证明了正辫状 Legendrian 链的精确拉格朗日填充的一大族对应于其增强品种的簇种子。我们解决了正辫状 Legendrian 链接的无穷填充问题;也就是说,只要正辫状 Legendrian 链接不是 ADE 类型,它就会在哈密尔顿等同性之前接纳无穷多个精确拉格朗日填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信