{"title":"Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation","authors":"Barbara Dembin, Dor Elboim, Ron Peled","doi":"10.1007/s00039-024-00672-z","DOIUrl":null,"url":null,"abstract":"<p>We consider first-passage percolation on <span>\\(\\mathbb{Z}^{2}\\)</span> with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics.</p><p>The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge.</p><p>We further prove that the limit shape assumption is satisfied for a specific family of distributions.</p><p>Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {−<i>n</i>,…,<i>n</i>}<sup>2</sup> which is covered by infinite geodesics starting at the origin is at most an inverse power of <i>n</i>. This result is obtained without explicit limit shape assumptions.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00672-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider first-passage percolation on \(\mathbb{Z}^{2}\) with independent and identically distributed weights whose common distribution is absolutely continuous with a finite exponential moment. Under the assumption that the limit shape has more than 32 extreme points, we prove that geodesics with nearby starting and ending points have significant overlap, coalescing on all but small portions near their endpoints. The statement is quantified, with power-law dependence of the involved quantities on the length of the geodesics.
The result leads to a quantitative resolution of the Benjamini–Kalai–Schramm midpoint problem. It is shown that the probability that the geodesic between two given points passes through a given edge is smaller than a power of the distance between the points and the edge.
We further prove that the limit shape assumption is satisfied for a specific family of distributions.
Lastly, related to the 1965 Hammersley–Welsh highways and byways problem, we prove that the expected fraction of the square {−n,…,n}2 which is covered by infinite geodesics starting at the origin is at most an inverse power of n. This result is obtained without explicit limit shape assumptions.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.