Xiaoyan Tang, Jorge Quiroz, Yixiao Zhang, Jessica Pan, Zhong Lai, Zhimei Du, Ren Liu
{"title":"A deep-well plate enabled automated high-throughput cell line development platform","authors":"Xiaoyan Tang, Jorge Quiroz, Yixiao Zhang, Jessica Pan, Zhong Lai, Zhimei Du, Ren Liu","doi":"10.1002/btpr.3442","DOIUrl":null,"url":null,"abstract":"<p>Cell line development (CLD) plays a crucial role in the manufacturing process development of therapeutic biologics. Most biologics are produced in Chinese hamster ovary (CHO) cell. Because of the nature of random transgene integration in CHO genome and CHO's inherent plasticity, stable CHO transfectants usually have a vast diversity in productivity, growth, and product quality. Thus, we often must resort to screening a large number of cell pools and clones to increase the probability of identifying the ideal production cell line, which is a very laborious and resource-demanding process. Here we have developed a deep-well plate (DWP) enabled high throughput (DEHT) CLD platform using 24-well DWP (24DWP), liquid handler, and other automation components. This platform has capabilities covering the key steps of CLD including cell passaging, clone imaging and expansion, and fed-batch production. We are the first to demonstrate the suitability of 24DWP for CLD by confirming minimal well-to-well and plate-to-plate variability and the absence of well-to-well cross contamination. We also demonstrated that growth, production, and product quality of 24DWP cultures were comparable to those of conventional shake flask cultures. The DEHT platform enables scientists to screen five times more cultures than the conventional CLD platform, thus significantly decreases the resources needed to identify an ideal production cell line for biologics manufacturing.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3442","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell line development (CLD) plays a crucial role in the manufacturing process development of therapeutic biologics. Most biologics are produced in Chinese hamster ovary (CHO) cell. Because of the nature of random transgene integration in CHO genome and CHO's inherent plasticity, stable CHO transfectants usually have a vast diversity in productivity, growth, and product quality. Thus, we often must resort to screening a large number of cell pools and clones to increase the probability of identifying the ideal production cell line, which is a very laborious and resource-demanding process. Here we have developed a deep-well plate (DWP) enabled high throughput (DEHT) CLD platform using 24-well DWP (24DWP), liquid handler, and other automation components. This platform has capabilities covering the key steps of CLD including cell passaging, clone imaging and expansion, and fed-batch production. We are the first to demonstrate the suitability of 24DWP for CLD by confirming minimal well-to-well and plate-to-plate variability and the absence of well-to-well cross contamination. We also demonstrated that growth, production, and product quality of 24DWP cultures were comparable to those of conventional shake flask cultures. The DEHT platform enables scientists to screen five times more cultures than the conventional CLD platform, thus significantly decreases the resources needed to identify an ideal production cell line for biologics manufacturing.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.