Ziren Jiang, Joseph C. Cappelleri, Margaret Gamalo, Yong Chen, Neal Thomas, Haitao Chu
{"title":"A comprehensive review and shiny application on the matching-adjusted indirect comparison","authors":"Ziren Jiang, Joseph C. Cappelleri, Margaret Gamalo, Yong Chen, Neal Thomas, Haitao Chu","doi":"10.1002/jrsm.1709","DOIUrl":null,"url":null,"abstract":"<p>Population-adjusted indirect comparison (PAIC) is an increasingly used technique for estimating the comparative effectiveness of different treatments for the health technology assessments when head-to-head trials are unavailable. Three commonly used PAIC methods include matching-adjusted indirect comparison (MAIC), simulated treatment comparison (STC), and multilevel network meta-regression (ML-NMR). MAIC enables researchers to achieve balanced covariate distribution across two independent trials when individual participant data are only available in one trial. In this article, we provide a comprehensive review of the MAIC methods, including their theoretical derivation, implicit assumptions, and connection to calibration estimation in survey sampling. We discuss the nuances between anchored and unanchored MAIC, as well as their required assumptions. Furthermore, we implement various MAIC methods in a user-friendly R Shiny application Shiny-MAIC. To our knowledge, it is the first Shiny application that implements various MAIC methods. The Shiny-MAIC application offers choice between anchored or unanchored MAIC, choice among different types of covariates and outcomes, and two variance estimators including bootstrap and robust standard errors. An example with simulated data is provided to demonstrate the utility of the Shiny-MAIC application, enabling a user-friendly approach conducting MAIC for healthcare decision-making. The Shiny-MAIC is freely available through the link: https://ziren.shinyapps.io/Shiny_MAIC/.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"671-686"},"PeriodicalIF":5.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1709","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1709","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Population-adjusted indirect comparison (PAIC) is an increasingly used technique for estimating the comparative effectiveness of different treatments for the health technology assessments when head-to-head trials are unavailable. Three commonly used PAIC methods include matching-adjusted indirect comparison (MAIC), simulated treatment comparison (STC), and multilevel network meta-regression (ML-NMR). MAIC enables researchers to achieve balanced covariate distribution across two independent trials when individual participant data are only available in one trial. In this article, we provide a comprehensive review of the MAIC methods, including their theoretical derivation, implicit assumptions, and connection to calibration estimation in survey sampling. We discuss the nuances between anchored and unanchored MAIC, as well as their required assumptions. Furthermore, we implement various MAIC methods in a user-friendly R Shiny application Shiny-MAIC. To our knowledge, it is the first Shiny application that implements various MAIC methods. The Shiny-MAIC application offers choice between anchored or unanchored MAIC, choice among different types of covariates and outcomes, and two variance estimators including bootstrap and robust standard errors. An example with simulated data is provided to demonstrate the utility of the Shiny-MAIC application, enabling a user-friendly approach conducting MAIC for healthcare decision-making. The Shiny-MAIC is freely available through the link: https://ziren.shinyapps.io/Shiny_MAIC/.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.