{"title":"Review on Medical Applications of Manganese Oxide (Mn2+, Mn3+, and Mn4+) Magnetic Nanoparticles","authors":"Rajesh Kumar Manavalan, Karolinekersin Enoch, Alexey Sergeevich Volegov, Gurunathan Angusamy, Sitakumaravel Nallasivam","doi":"10.1155/2024/1073915","DOIUrl":null,"url":null,"abstract":"Apart from our imagination, the nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nanoelectronics, environmental remediation, and medical healthcare. In the medical field, magnetic materials play vital roles such as magnetic resonance imaging (MRI), hyperthermia, and magnetic drug delivery. Among them, manganese oxide garnered great interest in biomedical applications due to its different oxidation states (Mn<sup>2+</sup>, Mn<sup>3+</sup>, and Mn<sup>4+</sup>). Manganese oxide nanostructures are widely explored for medical applications due to their availability, diverse morphologies, and tunable magnetic properties. In this review, cogent contributions of manganese oxides in medical applications are summarized. The crystalline structure and oxidation states of Mn oxides are highlighted. The synthesis approaches of Mn-based nanoparticles are outlined. The important medical applications of manganese-based nanoparticles like magnetic hyperthermia, MRI, and drug delivery are summarized. This review is conducted to cover the future impact of MnO<sub><i>x</i></sub> in diagnostic and therapeutic applications.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/1073915","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Apart from our imagination, the nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nanoelectronics, environmental remediation, and medical healthcare. In the medical field, magnetic materials play vital roles such as magnetic resonance imaging (MRI), hyperthermia, and magnetic drug delivery. Among them, manganese oxide garnered great interest in biomedical applications due to its different oxidation states (Mn2+, Mn3+, and Mn4+). Manganese oxide nanostructures are widely explored for medical applications due to their availability, diverse morphologies, and tunable magnetic properties. In this review, cogent contributions of manganese oxides in medical applications are summarized. The crystalline structure and oxidation states of Mn oxides are highlighted. The synthesis approaches of Mn-based nanoparticles are outlined. The important medical applications of manganese-based nanoparticles like magnetic hyperthermia, MRI, and drug delivery are summarized. This review is conducted to cover the future impact of MnOx in diagnostic and therapeutic applications.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.