A prismatic approach to crystalline local systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Haoyang Guo, Emanuel Reinecke
{"title":"A prismatic approach to crystalline local systems","authors":"Haoyang Guo, Emanuel Reinecke","doi":"10.1007/s00222-024-01238-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(X\\)</span> be a smooth <span>\\(p\\)</span>-adic formal scheme. We show that integral crystalline local systems on the generic fiber of <span>\\(X\\)</span> are equivalent to prismatic <span>\\(F\\)</span>-crystals over the analytic locus of the prismatic site of <span>\\(X\\)</span>. As an application, we give a prismatic proof of Fontaine’s <span>\\(\\mathrm {C}_{{\\mathrm {crys}}}\\)</span>-conjecture, for general coefficients, in the relative setting, and allowing ramified base fields. Along the way, we also establish various foundational results for the cohomology of prismatic <span>\\(F\\)</span>-crystals, including various comparison theorems, Poincaré duality, and Frobenius isogeny.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01238-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(X\) be a smooth \(p\)-adic formal scheme. We show that integral crystalline local systems on the generic fiber of \(X\) are equivalent to prismatic \(F\)-crystals over the analytic locus of the prismatic site of \(X\). As an application, we give a prismatic proof of Fontaine’s \(\mathrm {C}_{{\mathrm {crys}}}\)-conjecture, for general coefficients, in the relative setting, and allowing ramified base fields. Along the way, we also establish various foundational results for the cohomology of prismatic \(F\)-crystals, including various comparison theorems, Poincaré duality, and Frobenius isogeny.

Abstract Image

晶体局部系统的棱柱方法
让 \(X\) 是一个光滑的 \(p\)-adic 形式方案。我们证明了在\(X\)的泛纤维上的积分结晶局部系统等价于在\(X\)的棱柱站点的解析位置上的棱\(F\)-结晶。作为一个应用,我们给出了 Fontaine 的 \(\mathrm {C}_{{\mathrm {crys}}) -猜想的棱晶证明,适用于一般系数、相对设定和允许夯基域。在此过程中,我们还建立了棱(F)晶体同调的各种基础性结果,包括各种比较定理、波恩卡莱对偶性和弗罗贝尼斯同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信