{"title":"On denseness of horospheres in higher rank homogeneous spaces","authors":"OR LANDESBERG, HEE OH","doi":"10.1017/etds.2024.12","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline1.png\" /> <jats:tex-math> $ G $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a connected semisimple real algebraic group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline2.png\" /> <jats:tex-math> $\\Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Zariski dense discrete subgroup. Let <jats:italic>N</jats:italic> denote a maximal horospherical subgroup of <jats:italic>G</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline3.png\" /> <jats:tex-math> $P=MAN$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the minimal parabolic subgroup which is the normalizer of <jats:italic>N</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline4.png\" /> <jats:tex-math> $\\mathcal E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the unique <jats:italic>P</jats:italic>-minimal subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline5.png\" /> <jats:tex-math> $\\Gamma \\backslash G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline6.png\" /> <jats:tex-math> $\\mathcal E_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline7.png\" /> <jats:tex-math> $P^\\circ $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline8.png\" /> <jats:tex-math> $ G/P $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and show that the following are equivalent for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline9.png\" /> <jats:tex-math> $[g]\\in \\mathcal E_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:list list-type=\"number\"> <jats:list-item> <jats:label>(1)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline10.png\" /> <jats:tex-math> $gP\\in G/P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a horospherical limit point; </jats:list-item> <jats:list-item> <jats:label>(2)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline11.png\" /> <jats:tex-math> $[g]NM$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is dense in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline12.png\" /> <jats:tex-math> $\\mathcal E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; </jats:list-item> <jats:list-item> <jats:label>(3)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline13.png\" /> <jats:tex-math> $[g]N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is dense in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline14.png\" /> <jats:tex-math> $\\mathcal E_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> </jats:list> The equivalence of items (1) and (2) is due to Dal’bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline15.png\" /> <jats:tex-math> $NM$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-minimality of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline16.png\" /> <jats:tex-math> $\\mathcal E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> does not hold in a general Anosov homogeneous space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $ G $ be a connected semisimple real algebraic group and $\Gamma <G$ be a Zariski dense discrete subgroup. Let N denote a maximal horospherical subgroup of G, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of N. Let $\mathcal E$ denote the unique P-minimal subset of $\Gamma \backslash G$ and let $\mathcal E_0$ be a $P^\circ $ -minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]\in \mathcal E_0$ : (1) $gP\in G/P$ is a horospherical limit point; (2) $[g]NM$ is dense in $\mathcal E$ ; (3) $[g]N$ is dense in $\mathcal E_0$ . The equivalence of items (1) and (2) is due to Dal’bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the $NM$ -minimality of $\mathcal E$ does not hold in a general Anosov homogeneous space.