Mbit/s-range alkali vapour spin noise quantum random number generators

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Matija Koterle, Samo Beguš, Jure Pirman, Tadej Mežnaršič, Katja Gosar, Erik Zupanič, Rok Žitko, Peter Jeglič
{"title":"Mbit/s-range alkali vapour spin noise quantum random number generators","authors":"Matija Koterle,&nbsp;Samo Beguš,&nbsp;Jure Pirman,&nbsp;Tadej Mežnaršič,&nbsp;Katja Gosar,&nbsp;Erik Zupanič,&nbsp;Rok Žitko,&nbsp;Peter Jeglič","doi":"10.1140/epjqt/s40507-024-00221-5","DOIUrl":null,"url":null,"abstract":"<div><p>Spin noise based quantum random number generators first appeared in 2008 and have since then garnered little further interest, in part because their bit rate is limited by the transverse relaxation time <span>\\(T_{2}\\)</span> which for coated alkali vapour cells is typically in the kbit/s range. Here we present two advances. The first is an improved bit generation protocol that allows generating bits at rates exceeding <span>\\(1/T_{2}\\)</span> with only a minor increase of serial correlations. The second is a significant reduction of the time <span>\\(T_{2}\\)</span> itself by removing the coating, increasing the vapour temperature and introducing a magnetic-field gradient. In this way we managed to increase the bit generation rate to 1.04 Mbit/s. We analyse the quality of the generated random bits using entropy estimation and we discuss the extraction methods to obtain high-entropy bitstreams. We accurately predict the entropy output of the device backed with a stochastic model and numerical simulations.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00221-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00221-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spin noise based quantum random number generators first appeared in 2008 and have since then garnered little further interest, in part because their bit rate is limited by the transverse relaxation time \(T_{2}\) which for coated alkali vapour cells is typically in the kbit/s range. Here we present two advances. The first is an improved bit generation protocol that allows generating bits at rates exceeding \(1/T_{2}\) with only a minor increase of serial correlations. The second is a significant reduction of the time \(T_{2}\) itself by removing the coating, increasing the vapour temperature and introducing a magnetic-field gradient. In this way we managed to increase the bit generation rate to 1.04 Mbit/s. We analyse the quality of the generated random bits using entropy estimation and we discuss the extraction methods to obtain high-entropy bitstreams. We accurately predict the entropy output of the device backed with a stochastic model and numerical simulations.

Mbit/s 范围内的碱蒸气自旋噪声量子随机数发生器
基于自旋噪声的量子随机数发生器于 2008 年首次出现,此后几乎没有引起人们的进一步兴趣,部分原因是它们的比特率受到横向弛豫时间(T_{2}/\)的限制,而对于涂覆碱蒸汽电池来说,横向弛豫时间通常在 kbit/s 的范围内。在此,我们介绍两项进展。第一项是改进的比特生成协议,它允许以超过 \(1/T_{2}\)的速率生成比特,而串行相关性只略有增加。其次是通过去除涂层、提高蒸汽温度和引入磁场梯度,大大缩短了时间(T_{2}\)本身。通过这种方法,我们成功地将比特生成率提高到了 1.04 Mbit/s。我们利用熵估计分析了生成的随机比特的质量,并讨论了获得高熵比特流的提取方法。我们利用随机模型和数值模拟准确预测了设备的熵输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信